The graph of the function [tex]$f(x)=9^x-8$[/tex] can be obtained from the graph of [tex]$g(x)=9^x$[/tex] by one of the following actions:

(a) shifting the graph of [tex][tex]$g(x)$[/tex][/tex] to the right 8 units;
(b) shifting the graph of [tex]$g(x)$[/tex] to the left 8 units;
(c) shifting the graph of [tex]$g(x)$[/tex] upward 8 units;
(d) shifting the graph of [tex][tex]$g(x)$[/tex][/tex] downward 8 units;
(e) reflecting the graph of [tex]$g(x)$[/tex] in the [tex][tex]$x$[/tex]-axis[/tex];
(f) reflecting the graph of [tex]$g(x)$[/tex] in the [tex][tex]$y$[/tex]-axis[/tex].

Your answer is (input [tex]$a, b, c, d, e,$[/tex] or [tex]$f$[/tex] ) [tex]$\square$[/tex]

Is the domain of the function [tex][tex]$f(x)$[/tex][/tex] still [tex]$(-\infty, \infty)$[/tex]?

Your answer is (input Yes or No) [tex]$\square$[/tex]

The range of the function [tex][tex]$f(x)$[/tex][/tex] is [tex]$(A, \infty)$[/tex],
the value of [tex]$A$[/tex] is [tex]$\square$[/tex]



Answer :

The function [tex]\( f(x) = 9^x - 8 \)[/tex] can be derived from the function [tex]\( g(x) = 9^x \)[/tex] by applying a transformation. Here's how we can analyze the situation step-by-step:

### Transformation for the Graph

In the function [tex]\( f(x) = 9^x - 8 \)[/tex], the term [tex]\(-8\)[/tex] indicates a vertical shift downward by 8 units. The value of the function [tex]\( f(x) \)[/tex] is the same as [tex]\( g(x) \)[/tex] but decreased by a constant value of 8 for any given [tex]\( x \)[/tex]. Hence:

- The correct answer for the transformation is:
[tex]\[ (d) \text{ shifting the graph of } g(x) \text{ downward 8 units} \][/tex]

Your answer: [tex]\( \boxed{d} \)[/tex]

### Domain of the Function

The domain of [tex]\( g(x) = 9^x \)[/tex] is all real numbers, [tex]\( (-\infty, \infty) \)[/tex]. Subtracting 8 from [tex]\( g(x) \)[/tex] does not affect the domain, hence the domain of [tex]\( f(x) = 9^x - 8 \)[/tex]:

- The domain remains [tex]\( (-\infty, \infty) \)[/tex].

Your answer: [tex]\( \boxed{Yes} \)[/tex]

### Range of the Function

For the function [tex]\( g(x) = 9^x \)[/tex], the range is [tex]\( (0, \infty) \)[/tex] since [tex]\( 9^x \)[/tex] is always positive for any real number [tex]\( x \)[/tex].

When we transform [tex]\( g(x) \)[/tex] by subtracting 8 to form [tex]\( f(x) \)[/tex], the range shifts accordingly. Since the smallest value [tex]\( g(x) \)[/tex] can approach is 0 (but not including 0), the smallest value [tex]\( f(x) \)[/tex] will approach is [tex]\( 0 - 8 = -8 \)[/tex]. Therefore, the range of [tex]\( f(x) \)[/tex] becomes [tex]\( (-8, \infty) \)[/tex].

- The minimum value, [tex]\( A \)[/tex], in the range [tex]\( (A, \infty) \)[/tex] is:
[tex]\[ A = -8 \][/tex]

Your answer: [tex]\( \boxed{-8} \)[/tex]