### Common Polyatomic Ions

\begin{tabular}{|c|c|c|c|}
\hline
Chemical Name & Chemical Formula & Chemical Name & Chemical Formula \\
\hline
acetate & [tex]$C _2 H _3 O _2^{-}$[/tex] & nitrite & [tex]$NO _2^{-}$[/tex] \\
\hline
carbonate & [tex]$CO _3{ }^{2-}$[/tex] & ammonium & [tex]$NH _4^{+}$[/tex] \\
\hline
hypocarbonite & [tex]$CO ^{2-}$[/tex] & cyanide & [tex]$CN ^{-}$[/tex] \\
\hline
\begin{tabular}{l}
hydrogen carbonate \\
(bicarbonate)
\end{tabular} & [tex]$HCO _3^{-}$[/tex] & hydroxide & [tex]$OH ^{-}$[/tex] \\
\hline
chlorite & [tex]$ClO _2^{-}$[/tex] & peroxide & [tex]$O _2^{2-}$[/tex] \\
\hline
hypochlorite & [tex]$ClO ^{-}$[/tex] & phosphate & [tex]$PO _4^{3-}$[/tex] \\
\hline
\end{tabular}

---

### Type the correct answer in the box. Express your answer to three significant figures.

Iron(II) chloride and sodium carbonate react to make iron(II) carbonate and sodium chloride:

[tex]\[
FeCl _2( aq )+ Na _2 CO _3(s) \rightarrow FeCO _3(s)+2 NaCl ( aq )
\][/tex]

Given 1.24 liters of a 2.00 M solution of iron(II) chloride and unlimited sodium carbonate, how many grams of iron(II) carbonate can the reaction produce?

The reaction can produce [tex]$\square$[/tex] grams of iron(II) carbonate.



Answer :

To determine how many grams of iron(II) carbonate ([tex]\(FeCO_3\)[/tex]) can be produced from the given reaction, we will follow these steps:

1. Identify the Given Data:
- Volume of [tex]\(FeCl_2\)[/tex] solution: 1.24 liters
- Molarity of [tex]\(FeCl_2\)[/tex] solution: 2.00 M
- Molar mass of [tex]\(FeCO_3\)[/tex]: 115.854 g/mol

2. Calculate the Moles of [tex]\(FeCl_2\)[/tex] in Solution:
Using the formula:
[tex]\[ \text{moles of } FeCl_2 = \text{Volume (L)} \times \text{Molarity (M)} \][/tex]
[tex]\[ \text{moles of } FeCl_2 = 1.24 \text{ L} \times 2.00 \text{ M} = 2.48 \text{ moles} \][/tex]

3. Determine the Moles of [tex]\(FeCO_3\)[/tex] Produced:
The balanced chemical equation is:
[tex]\[ FeCl_2( aq ) + Na_2 CO_3(s) \rightarrow FeCO_3(s) + 2NaCl(aq) \][/tex]
According to the stoichiometry of the reaction, 1 mole of [tex]\(FeCl_2\)[/tex] reacts to produce 1 mole of [tex]\(FeCO_3\)[/tex]. Hence, the moles of [tex]\(FeCl_2\)[/tex] are equal to the moles of [tex]\(FeCO_3\)[/tex] produced:
[tex]\[ \text{moles of } FeCO_3 = 2.48 \text{ moles} \][/tex]

4. Calculate the Mass of [tex]\(FeCO_3\)[/tex] Produced:
Using the molar mass of [tex]\(FeCO_3\)[/tex]:
[tex]\[ \text{mass of } FeCO_3 = \text{moles of } FeCO_3 \times \text{molar mass of } FeCO_3 \][/tex]
[tex]\[ \text{mass of } FeCO_3 = 2.48 \text{ moles} \times 115.854 \text{ g/mol} \][/tex]
[tex]\[ \text{mass of } FeCO_3 = 287.31792 \text{ grams} \][/tex]

5. Express the Answer to Three Significant Figures:
The mass of iron(II) carbonate that can be produced is:
[tex]\[ 287 \text{ grams} \][/tex]

Therefore, the reaction can produce [tex]\( \boxed{287} \)[/tex] grams of iron(II) carbonate.