What is the sum of the polynomials?

[tex]\[ (8x^2 - 9y^2 - 4x) + (x^2 - 3y^2 - 7x) \][/tex]

A. [tex]\[ 7x^2 - 6y^2 + 3x \][/tex]
B. [tex]\[ 9x^2 - 6y^2 + 3x \][/tex]
C. [tex]\[ 9x^2 - 12y^2 + 3x \][/tex]
D. [tex]\[ 9x^2 - 12y^2 - 11x \][/tex]



Answer :

To find the sum of the polynomials [tex]\((8 x^2 - 9 y^2 - 4 x)\)[/tex] and [tex]\((x^2 - 3 y^2 - 7 x)\)[/tex], we must add the coefficients of like terms.

Here’s the step-by-step solution:

1. Identify the like terms:
- The [tex]\(x^2\)[/tex]-terms are [tex]\(8 x^2\)[/tex] from the first polynomial and [tex]\(x^2\)[/tex] from the second polynomial.
- The [tex]\(y^2\)[/tex]-terms are [tex]\(-9 y^2\)[/tex] from the first polynomial and [tex]\(-3 y^2\)[/tex] from the second polynomial.
- The [tex]\(x\)[/tex]-terms are [tex]\(-4 x\)[/tex] from the first polynomial and [tex]\(-7 x\)[/tex] from the second polynomial.

2. Add the coefficients of the [tex]\(x^2\)[/tex]-terms:
[tex]\[8 x^2 + x^2 = (8 + 1) x^2 = 9 x^2\][/tex]

3. Add the coefficients of the [tex]\(y^2\)[/tex]-terms:
[tex]\[-9 y^2 - 3 y^2 = (-9 - 3) y^2 = -12 y^2\][/tex]

4. Add the coefficients of the [tex]\(x\)[/tex]-terms:
[tex]\[-4 x - 7 x = (-4 - 7) x = -11 x\][/tex]

Putting it all together, the sum of the polynomials is:
[tex]\[9 x^2 - 12 y^2 - 11 x\][/tex]

Therefore, the correct answer is:
[tex]\[9 x^2 - 12 y^2 - 11 x\][/tex]

So, the sum of the polynomials is:
[tex]\[ \boxed{9 x^2 - 12 y^2 - 11 x} \][/tex]

Answer:

hello

Step-by-step explanation:

8x²-9y²-4x + x²-3y² -7x

=8x²+x² -9y²-3y² -4x-7x

=9x²-12y² -11x