Answer :
Certainly! Let's simplify the given expression step by step.
Given the expression:
[tex]\[ \frac{18 x^4 - 8 x^2 y^2}{12 x^4 y - 16 x^3 y^2} \][/tex]
### Step 1: Factor the Numerator
First, consider the numerator:
[tex]\[ 18 x^4 - 8 x^2 y^2 \][/tex]
We can factor out the greatest common factor (GCF):
[tex]\[ = 2(9 x^4 - 4 x^2 y^2) \][/tex]
Notice that [tex]\(9 x^4 - 4 x^2 y^2\)[/tex] is a difference of squares:
[tex]\[ 9 x^4 - 4 x^2 y^2 = (3 x^2)^2 - (2 x y)^2 \][/tex]
We apply the difference of squares formula [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex]:
[tex]\[ = 2 \left((3 x^2 - 2 y^2)(3 x^2 + 2 y^2)\right) \][/tex]
So the numerator simplifies to:
[tex]\[ 2(3 x^2 - 2 y^2)(3 x^2 + 2 y^2) \][/tex]
### Step 2: Factor the Denominator
Next, consider the denominator:
[tex]\[ 12 x^4 y - 16 x^3 y^2 \][/tex]
We can also factor out the GCF:
[tex]\[ = 4 x^3 y (3 x - 4 y) \][/tex]
So the denominator simplifies to:
[tex]\[ 4 x^3 y (3 x - 4 y) \][/tex]
### Step 3: Simplify the Fraction
Now we have:
[tex]\[ \frac{2 (3 x^2 - 2 y^2) (3 x^2 + 2 y^2)}{4 x^3 y (3 x - 4 y)} \][/tex]
We can see that [tex]\(2\)[/tex] in the numerator and [tex]\(4\)[/tex] in the denominator can be simplified:
[tex]\[ = \frac{(3 x^2 - 2 y^2)(3 x^2 + 2 y^2)}{2 x^3 y (3 x - 4 y)} \][/tex]
The final simplified form of the given expression is:
[tex]\[ \frac{(3 x^2 - 2 y^2)(3 x^2 + 2 y^2)}{2 x y (3 x - 4 y)} \][/tex]
In a concise form, it looks like:
[tex]\[ \frac{9x^2 - 4y^2}{2xy (3x - 4y)} \][/tex]
Hence, the simplified expression is:
[tex]\[ \boxed{\frac{(9 x^2 - 4 y^2)}{2 x y (3 x - 4 y)}} \][/tex]
Given the expression:
[tex]\[ \frac{18 x^4 - 8 x^2 y^2}{12 x^4 y - 16 x^3 y^2} \][/tex]
### Step 1: Factor the Numerator
First, consider the numerator:
[tex]\[ 18 x^4 - 8 x^2 y^2 \][/tex]
We can factor out the greatest common factor (GCF):
[tex]\[ = 2(9 x^4 - 4 x^2 y^2) \][/tex]
Notice that [tex]\(9 x^4 - 4 x^2 y^2\)[/tex] is a difference of squares:
[tex]\[ 9 x^4 - 4 x^2 y^2 = (3 x^2)^2 - (2 x y)^2 \][/tex]
We apply the difference of squares formula [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex]:
[tex]\[ = 2 \left((3 x^2 - 2 y^2)(3 x^2 + 2 y^2)\right) \][/tex]
So the numerator simplifies to:
[tex]\[ 2(3 x^2 - 2 y^2)(3 x^2 + 2 y^2) \][/tex]
### Step 2: Factor the Denominator
Next, consider the denominator:
[tex]\[ 12 x^4 y - 16 x^3 y^2 \][/tex]
We can also factor out the GCF:
[tex]\[ = 4 x^3 y (3 x - 4 y) \][/tex]
So the denominator simplifies to:
[tex]\[ 4 x^3 y (3 x - 4 y) \][/tex]
### Step 3: Simplify the Fraction
Now we have:
[tex]\[ \frac{2 (3 x^2 - 2 y^2) (3 x^2 + 2 y^2)}{4 x^3 y (3 x - 4 y)} \][/tex]
We can see that [tex]\(2\)[/tex] in the numerator and [tex]\(4\)[/tex] in the denominator can be simplified:
[tex]\[ = \frac{(3 x^2 - 2 y^2)(3 x^2 + 2 y^2)}{2 x^3 y (3 x - 4 y)} \][/tex]
The final simplified form of the given expression is:
[tex]\[ \frac{(3 x^2 - 2 y^2)(3 x^2 + 2 y^2)}{2 x y (3 x - 4 y)} \][/tex]
In a concise form, it looks like:
[tex]\[ \frac{9x^2 - 4y^2}{2xy (3x - 4y)} \][/tex]
Hence, the simplified expression is:
[tex]\[ \boxed{\frac{(9 x^2 - 4 y^2)}{2 x y (3 x - 4 y)}} \][/tex]