Drag the tiles to the boxes to form correct pairs.

The table shows the distances between a star and three celestial objects. Use the conversion factors to rewrite the distances in different, but equivalent, units.

\begin{tabular}{|l|l|}
\hline
Celestial Object & Distance from the Star \\
\hline
Object A & 0.000001877 pc \\
\hline
Object B & 30.06 AU \\
\hline
Object C & 778.3 million km \\
\hline
\end{tabular}

Conversion factors:
- [tex]\(1 \text{ AU} = 1.5 \times 10^8 \text{ km}\)[/tex]
- 1 light-year [tex]\(= 9.5 \times 10^{12} \text{ km}\)[/tex]
- 1 parsec [tex]\(= 31 \text{ trillion km, or about 3.282 light-years}\)[/tex]

Match the distances to their equivalent units:

[tex]\[
\begin{array}{ll}
\text{0.0001458 pc} & \longrightarrow \square \\
\text{5.2 AU} & \longrightarrow \square \\
\text{57.81 million km} & \longrightarrow \square \\
\end{array}
\][/tex]



Answer :

To determine the correct pairs of distances and their equivalent values, let's rewrite the given distances using the conversion factors.

Given distances:

- Object A: 0.000001877 parsecs
- Object B: 30.06 Astronomical Units (AU)
- Object C: 778.3 million kilometers

Equivalent distances:

Using the conversion factors, we find the equivalent distances:

1. Distance to Object A:
Given distance: 0.000001877 parsecs
Equivalent distance: 0.0001458 parsecs

2. Distance to Object B:
Given distance: 30.06 AU
Equivalent distance: 5.2 AU

3. Distance to Object C:
Given distance: 778.3 million kilometers
Equivalent distance: 57.81 million kilometers

Now, let's form the correct pairs:

- Distance to object A ⟶ 0.0001458 parsecs
- Distance to object B ⟶ 5.2 Astronomical Units (AU)
- Distance to object C ⟶ 57.81 million kilometers

So, we drag the tiles to the boxes to form the correct pairs as follows:

- 0.0001458 parsecs ⟶ Distance to object A
- 5.2 AU ⟶ Distance to object B
- 57.81 million kilometers ⟶ Distance to object C