Calculate the kinetic energy of [tex]CO_2[/tex] at 272 K. Express the kinetic energy in joules per mole to three significant figures.

[tex]\[ E_{\text{avg}} = \ \square \ \text{J/mol} \][/tex]



Answer :

To calculate the average kinetic energy of a mole of [tex]$CO_2$[/tex] at a temperature of 272 K, we use the formula for the average kinetic energy of an ideal gas. The formula is given by:

[tex]\[ E_{\text{avg}} = \left(\frac{3}{2}\right) R T \][/tex]

where:
- [tex]\( R \)[/tex] is the universal gas constant, which is approximately [tex]\( 8.314 \)[/tex] J/(mol·K),
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).

Given:
- [tex]\( T = 272 \)[/tex] K,
- [tex]\( R = 8.314 \)[/tex] J/(mol·K).

Now, using these values in the formula:

[tex]\[ E_{\text{avg}} = \left(\frac{3}{2}\right) \times 8.314 \times 272 \][/tex]

Following this computation, the value of the average kinetic energy is approximately:

[tex]\[ E_{\text{avg}} = 3392.112 \, \text{J/mol} \][/tex]

Expressing the result to three significant figures:

[tex]\[ E_{\text{avg}} \approx 3390 \, \text{J/mol} \][/tex]

Thus, the average kinetic energy of [tex]\( CO_2 \)[/tex] at 272 K is:

[tex]\[ E_{\text{avg}} = 3390 \, \text{J/mol} \][/tex]