Answer :

Certainly! Let's solve the equation [tex]\(-4(x-8)-6=-5(x+3)\)[/tex] step by step.

1. Distribute the multiplication on both sides:

On the left side, distribute [tex]\(-4\)[/tex] into [tex]\((x - 8)\)[/tex]:
[tex]\[ -4(x - 8) = -4x + 32 \][/tex]
With the [tex]\(-6\)[/tex] still present, we have:
[tex]\[ -4x + 32 - 6 \][/tex]
Simplify:
[tex]\[ -4x + 26 \][/tex]

On the right side, distribute [tex]\(-5\)[/tex] into [tex]\((x + 3)\)[/tex]:
[tex]\[ -5(x + 3) = -5x - 15 \][/tex]

2. Write the equation with the simplified expressions:
[tex]\[ -4x + 26 = -5x - 15 \][/tex]

3. Collect all [tex]\(x\)[/tex]-terms on one side:

Add [tex]\(5x\)[/tex] to both sides to move the [tex]\(x\)[/tex] terms to one side:
[tex]\[ -4x + 26 + 5x = -5x - 15 + 5x \][/tex]
Simplify:
[tex]\[ x + 26 = -15 \][/tex]

4. Isolate [tex]\(x\)[/tex]:

Subtract 26 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x + 26 - 26 = -15 - 26 \][/tex]
Simplify:
[tex]\[ x = -41 \][/tex]

The solution to the equation [tex]\(-4(x-8)-6=-5(x+3)\)[/tex] is [tex]\(x = -41\)[/tex].