Select the correct answer.

A puppy weighing 3 kilograms races through the dog park. If she slows from a speed of 2 meters/second to 1 meter/second, what will happen to her kinetic energy? Use the kinetic energy equation [tex]$KE=\frac{1}{2} mv^2$[/tex].

A. Her kinetic energy decreases to 1.5 J.
B. Her kinetic energy increases to 1.5 J.
C. Her kinetic energy remains unchanged.
D. Her kinetic energy decreases to 1 J.



Answer :

Let's address the given problem step-by-step using the kinetic energy equation, [tex]\( KE = \frac{1}{2} mv^2 \)[/tex].

1. Identify the given values:
- Mass [tex]\( m = 3 \)[/tex] kg
- Initial speed [tex]\( v_i = 2 \)[/tex] m/s
- Final speed [tex]\( v_f = 1 \)[/tex] m/s

2. Calculate the initial kinetic energy:
[tex]\[ KE_{\text{initial}} = \frac{1}{2} m v_i^2 \][/tex]
Substitute the given values:
[tex]\[ KE_{\text{initial}} = \frac{1}{2} \times 3 \times (2)^2 \][/tex]
[tex]\[ KE_{\text{initial}} = \frac{1}{2} \times 3 \times 4 \][/tex]
[tex]\[ KE_{\text{initial}} = \frac{3 \times 4}{2} \][/tex]
[tex]\[ KE_{\text{initial}} = 6 \text{ J} \][/tex]

3. Calculate the final kinetic energy:
[tex]\[ KE_{\text{final}} = \frac{1}{2} m v_f^2 \][/tex]
Substitute the given values:
[tex]\[ KE_{\text{final}} = \frac{1}{2} \times 3 \times (1)^2 \][/tex]
[tex]\[ KE_{\text{final}} = \frac{1}{2} \times 3 \times 1 \][/tex]
[tex]\[ KE_{\text{final}} = \frac{3 \times 1}{2} \][/tex]
[tex]\[ KE_{\text{final}} = 1.5 \text{ J} \][/tex]

4. Determine the change in kinetic energy:
[tex]\[ \Delta KE = KE_{\text{final}} - KE_{\text{initial}} \][/tex]
[tex]\[ \Delta KE = 1.5 \text{ J} - 6 \text{ J} \][/tex]
[tex]\[ \Delta KE = -4.5 \text{ J} \][/tex]

The negative sign indicates that the kinetic energy has decreased.

Therefore, the best match among the options is Option A:

Her kinetic energy decreases to 1.5 J.