Select the correct answer.

What are the solutions of this quadratic equation?
[tex]\[ x^2 - 6x + 2 = 0 \][/tex]

A. [tex]\( x = 6 \pm \sqrt{7} \)[/tex]

B. [tex]\( x = 3 \pm \sqrt{7} \)[/tex]

C. [tex]\( x = -3 \pm \sqrt{7} \)[/tex]

D. [tex]\( x = 3 \pm \sqrt{11} \)[/tex]



Answer :

To solve the quadratic equation [tex]\(x^2 - 6x + 2 = 0\)[/tex], we will use the quadratic formula, which is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, the coefficients are:
[tex]\[ a = 1, \quad b = -6, \quad c = 2 \][/tex]

First, we calculate the discriminant [tex]\(D\)[/tex]:

[tex]\[ D = b^2 - 4ac \][/tex]

Substituting the values:

[tex]\[ D = (-6)^2 - 4 \cdot 1 \cdot 2 = 36 - 8 = 28 \][/tex]

The discriminant [tex]\(D\)[/tex] is 28.

Now we use the quadratic formula to find the roots [tex]\(x_1\)[/tex] and [tex]\(x_2\)[/tex]:

[tex]\[ x = \frac{-b \pm \sqrt{28}}{2a} = \frac{6 \pm \sqrt{28}}{2} \][/tex]

Simplifying further:

[tex]\[ x = \frac{6 \pm 2\sqrt{7}}{2} = 3 \pm \sqrt{7} \][/tex]

Thus, the solutions to the equation [tex]\(x^2 - 6x + 2 = 0\)[/tex] are:

[tex]\[ x_1 = 3 + \sqrt{7} \quad \text{and} \quad x_2 = 3 - \sqrt{7} \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{B. \; x = 3 \pm \sqrt{7}} \][/tex]