Complete the table by solving for [tex]\(y\)[/tex] in the equation [tex]\(y = 2x - 2\)[/tex].

[tex]\[
y = 2x - 2
\][/tex]

\begin{tabular}{c|c}
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-1 & \\
0 & \\
1 & \\
2 & \\
3 & \\
4 & \\
\hline
\end{tabular}



Answer :

To solve for the values of [tex]\( y \)[/tex] given the equation [tex]\( y = 2x - 2 \)[/tex] and the values of [tex]\( x \)[/tex]:

1. Substitute [tex]\( x = -1 \)[/tex] into the equation:
[tex]\[ y = 2(-1) - 2 = -2 - 2 = -4 \][/tex]

2. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = 2(0) - 2 = 0 - 2 = -2 \][/tex]

3. Substitute [tex]\( x = 1 \)[/tex] into the equation:
[tex]\[ y = 2(1) - 2 = 2 - 2 = 0 \][/tex]

4. Substitute [tex]\( x = 2 \)[/tex] into the equation:
[tex]\[ y = 2(2) - 2 = 4 - 2 = 2 \][/tex]

5. Substitute [tex]\( x = 3 \)[/tex] into the equation:
[tex]\[ y = 2(3) - 2 = 6 - 2 = 4 \][/tex]

6. Substitute [tex]\( x = 4 \)[/tex] into the equation:
[tex]\[ y = 2(4) - 2 = 8 - 2 = 6 \][/tex]

So, the completed table is:

[tex]\[ \begin{array}{l|l} x & y \\ \hline -1 & -4 \\ 0 & -2 \\ 1 & 0 \\ 2 & 2 \\ 3 & 4 \\ 4 & 6 \\ \end{array} \][/tex]