Answer :
To determine the set of numbers that gives the correct possible values of [tex]\( / \)[/tex] for [tex]\( n = 2 \)[/tex], let's analyze the given condition [tex]\( n = 2 \)[/tex] and derive the possible values of [tex]\( / \)[/tex].
Here's the detailed, step-by-step solution:
1. The variable [tex]\( n \)[/tex] is given the value 2.
2. We need to determine the possible values of some variable or expression represented by [tex]\( / \)[/tex] in the context where [tex]\( n = 2 \)[/tex].
Given [tex]\( n = 2 \)[/tex], the analysis leads to the possible values of [tex]\( / \)[/tex]:
- Start from 0 and end at [tex]\( n \)[/tex].
- Therefore, we have the following values: 0, 1, and 2.
Thus, the correct set of possible values of [tex]\( / \)[/tex] for [tex]\( n = 2 \)[/tex] is [tex]\(\{0, 1, 2\}\)[/tex].
So, the answer is [tex]\( \boxed{0, 1, 2} \)[/tex].
Here's the detailed, step-by-step solution:
1. The variable [tex]\( n \)[/tex] is given the value 2.
2. We need to determine the possible values of some variable or expression represented by [tex]\( / \)[/tex] in the context where [tex]\( n = 2 \)[/tex].
Given [tex]\( n = 2 \)[/tex], the analysis leads to the possible values of [tex]\( / \)[/tex]:
- Start from 0 and end at [tex]\( n \)[/tex].
- Therefore, we have the following values: 0, 1, and 2.
Thus, the correct set of possible values of [tex]\( / \)[/tex] for [tex]\( n = 2 \)[/tex] is [tex]\(\{0, 1, 2\}\)[/tex].
So, the answer is [tex]\( \boxed{0, 1, 2} \)[/tex].