Sure, let's simplify the given expression step-by-step:
Given expression:
[tex]$ -3 + -6(-6u + -7) $[/tex]
First, simplify inside the parentheses:
[tex]$ -3 + -6(-6u - 7) $[/tex]
Next, distribute the [tex]\(-6\)[/tex] across the terms inside the parentheses:
[tex]$ -6 \cdot -6u + -6 \cdot -7 $[/tex]
Calculate these products individually:
[tex]$ -6 \cdot -6u = 36u $[/tex]
[tex]$ -6 \cdot -7 = 42 $[/tex]
So now we have:
[tex]$ -3 + 36u + 42 $[/tex]
Combine the constant terms [tex]\(-3\)[/tex] and [tex]\(42\)[/tex]:
[tex]$ -3 + 42 = 39 $[/tex]
Thus, the simplified expression is:
[tex]$ 36u + 39 $[/tex]