To simplify the expression [tex]\( 5(2s - 7) + 4s \)[/tex], follow these steps:
1. Distribute the 5 across the terms inside the parentheses:
[tex]\[
5(2s - 7)
\][/tex]
- Multiply 5 by [tex]\( 2s \)[/tex] to get:
[tex]\[
5 \cdot 2s = 10s
\][/tex]
- Multiply 5 by [tex]\(-7\)[/tex] to get:
[tex]\[
5 \cdot (-7) = -35
\][/tex]
Combining these results, we have:
[tex]\[
10s - 35
\][/tex]
2. Add the remaining term [tex]\( 4s \)[/tex] to the expression:
[tex]\[
10s - 35 + 4s
\][/tex]
3. Combine like terms [tex]\( 10s \)[/tex] and [tex]\( 4s \)[/tex]:
- The like terms are [tex]\( 10s \)[/tex] and [tex]\( 4s \)[/tex]:
[tex]\[
10s + 4s = 14s
\][/tex]
4. Write the simplified expression:
[tex]\[
14s - 35
\][/tex]
So, the simplified expression is:
[tex]\[
14s - 35
\][/tex]