Answer :

To simplify the expression [tex]\( 5(2s - 7) + 4s \)[/tex], follow these steps:

1. Distribute the 5 across the terms inside the parentheses:
[tex]\[ 5(2s - 7) \][/tex]
- Multiply 5 by [tex]\( 2s \)[/tex] to get:
[tex]\[ 5 \cdot 2s = 10s \][/tex]
- Multiply 5 by [tex]\(-7\)[/tex] to get:
[tex]\[ 5 \cdot (-7) = -35 \][/tex]
Combining these results, we have:
[tex]\[ 10s - 35 \][/tex]

2. Add the remaining term [tex]\( 4s \)[/tex] to the expression:
[tex]\[ 10s - 35 + 4s \][/tex]

3. Combine like terms [tex]\( 10s \)[/tex] and [tex]\( 4s \)[/tex]:
- The like terms are [tex]\( 10s \)[/tex] and [tex]\( 4s \)[/tex]:
[tex]\[ 10s + 4s = 14s \][/tex]

4. Write the simplified expression:
[tex]\[ 14s - 35 \][/tex]

So, the simplified expression is:
[tex]\[ 14s - 35 \][/tex]