Multiply:
[tex]\[ 4 \sqrt{2} \times 6 \sqrt{18} \][/tex]

A. [tex]\( 20 \sqrt{5} \)[/tex]
B. [tex]\( 144 \sqrt{2} \)[/tex]
C. 144
D. [tex]\( 24 \sqrt{6} \)[/tex]



Answer :

To solve the given problem [tex]\( 4 \sqrt{2} \times 6 \sqrt{18} \)[/tex], follow these steps:

1. Separate Constants and Radicals:
- The given expression is [tex]\( 4 \sqrt{2} \times 6 \sqrt{18} \)[/tex].
- Rewrite this as [tex]\( (4 \times 6) \times (\sqrt{2} \times \sqrt{18}) \)[/tex].

2. Multiply the Constants:
- The constants [tex]\(4\)[/tex] and [tex]\(6\)[/tex] multiply to give [tex]\(4 \times 6 = 24\)[/tex].

3. Multiply the Square Roots:
- The radicals [tex]\( \sqrt{2} \times \sqrt{18} \)[/tex] can be simplified by using the property of square roots: [tex]\( \sqrt{a} \times \sqrt{b} = \sqrt{a \times b} \)[/tex].
- Therefore, [tex]\( \sqrt{2} \times \sqrt{18} = \sqrt{2 \times 18} = \sqrt{36} \)[/tex].

4. Simplify the Square Root:
- Next, simplify [tex]\( \sqrt{36} \)[/tex]. Since [tex]\(36\)[/tex] is a perfect square, [tex]\( \sqrt{36} = 6 \)[/tex].

5. Final Multiplication:
- Now, multiply the constant [tex]\( 24 \)[/tex] by the simplified square root [tex]\( 6 \)[/tex]:
[tex]\[ 24 \times 6 = 144 \][/tex]

Thus, the complete simplified expression of [tex]\( 4 \sqrt{2} \times 6 \sqrt{18} \)[/tex] is [tex]\( 144 \)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{144} \][/tex]