Answer :
Sure! Let's solve the expression [tex]\( 5 + 4x^3 - 4x + 2a \)[/tex] step by step, given that [tex]\( x = 8 \)[/tex] and [tex]\( a = 6 \)[/tex].
1. Substitute the values of [tex]\( x \)[/tex] and [tex]\( a \)[/tex] into the expression:
[tex]\[ 5 + 4(8)^3 - 4(8) + 2(6) \][/tex]
2. Compute [tex]\( (8)^3 \)[/tex]:
[tex]\[ (8)^3 = 8 \times 8 \times 8 = 512 \][/tex]
3. Next, calculate [tex]\( 4 \times (8)^3 \)[/tex]:
[tex]\[ 4 \times 512 = 2048 \][/tex]
4. Then, compute [tex]\( -4x \)[/tex] with [tex]\( x = 8 \)[/tex]:
[tex]\[ -4 \times 8 = -32 \][/tex]
5. Now, compute [tex]\( 2a \)[/tex] with [tex]\( a = 6 \)[/tex]:
[tex]\[ 2 \times 6 = 12 \][/tex]
6. Put all these calculated values into the original expression:
[tex]\[ 5 + 2048 - 32 + 12 \][/tex]
7. Add and subtract the values step-by-step:
[tex]\[ 5 + 2048 = 2053 \][/tex]
[tex]\[ 2053 - 32 = 2021 \][/tex]
[tex]\[ 2021 + 12 = 2033 \][/tex]
So, after evaluating the expression step-by-step, the result is [tex]\( \boxed{2033} \)[/tex].
1. Substitute the values of [tex]\( x \)[/tex] and [tex]\( a \)[/tex] into the expression:
[tex]\[ 5 + 4(8)^3 - 4(8) + 2(6) \][/tex]
2. Compute [tex]\( (8)^3 \)[/tex]:
[tex]\[ (8)^3 = 8 \times 8 \times 8 = 512 \][/tex]
3. Next, calculate [tex]\( 4 \times (8)^3 \)[/tex]:
[tex]\[ 4 \times 512 = 2048 \][/tex]
4. Then, compute [tex]\( -4x \)[/tex] with [tex]\( x = 8 \)[/tex]:
[tex]\[ -4 \times 8 = -32 \][/tex]
5. Now, compute [tex]\( 2a \)[/tex] with [tex]\( a = 6 \)[/tex]:
[tex]\[ 2 \times 6 = 12 \][/tex]
6. Put all these calculated values into the original expression:
[tex]\[ 5 + 2048 - 32 + 12 \][/tex]
7. Add and subtract the values step-by-step:
[tex]\[ 5 + 2048 = 2053 \][/tex]
[tex]\[ 2053 - 32 = 2021 \][/tex]
[tex]\[ 2021 + 12 = 2033 \][/tex]
So, after evaluating the expression step-by-step, the result is [tex]\( \boxed{2033} \)[/tex].