\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$\left(\frac{2}{3}\right)^x$[/tex] \\
\hline
-1 & [tex]$\frac{3}{2}$[/tex] \\
\hline
1 & [tex]$\frac{2}{3}$[/tex] \\
\hline
2 & [tex]$\frac{4}{9}$[/tex] \\
\hline
\end{tabular}



Answer :

Sure, let's complete the table and provide a step-by-step explanation for each calculation.

Given the equation: [tex]\( \left( \frac{2}{3} \right)^x \)[/tex]

We need to fill in the values in the table for the specified [tex]\( x \)[/tex] values.

### For [tex]\( x = -1 \)[/tex]:
[tex]\[ \left( \frac{2}{3} \right)^{-1} = \frac{1}{\left( \frac{2}{3} \right)} = \frac{1}{\frac{2}{3}} = \frac{3}{2} = 1.5 \][/tex]

The value when [tex]\( x = -1 \)[/tex] is [tex]\( 1.5 \)[/tex].

### For [tex]\( x = 2 \)[/tex]:
[tex]\[ \left( \frac{2}{3} \right)^{2} = \left( \frac{2}{3} \right) \times \left( \frac{2}{3} \right) = \frac{4}{9} \approx 0.4444444444444444 \][/tex]

The value when [tex]\( x = 2 \)[/tex] is approximately [tex]\( 0.4444444444444444 \)[/tex].

### Complete Table:
Now, we can fill in the values we calculated into the table:

[tex]\[ \begin{array}{|c|c|} \hline x & \left( \frac{2}{3} \right)^x \\ \hline -1 & 1.5 \\ \hline 2 & 0.4444444444444444 \\ \hline \end{array} \][/tex]

### Final Answer:
The completed table is:

| [tex]\( x \)[/tex] | [tex]\( \left( \frac{2}{3} \right)^x \)[/tex] |
| ------ | ---------- |
| -1 | 1.5 |
| 2 | 0.4444444444444444 |

This completes the step-by-step solution for the given problem.