Answer :
To solve for the value of [tex]\( x^2 + \frac{1}{x^2} \)[/tex] given that [tex]\( x + \frac{1}{x} = 6 \)[/tex], we will follow a step-by-step approach:
1. Start with the given equation:
[tex]\[ x + \frac{1}{x} = 6 \][/tex]
2. Square both sides of the equation:
[tex]\[ \left( x + \frac{1}{x} \right)^2 = 6^2 \][/tex]
3. Expand the left-hand side using the algebraic identity [tex]\((a + b)^2 = a^2 + 2ab + b^2\)[/tex]:
[tex]\[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 36 \][/tex]
4. Simplify the expanded equation:
[tex]\[ x^2 + 2 + \frac{1}{x^2} = 36 \][/tex]
5. Isolate [tex]\( x^2 + \frac{1}{x^2} \)[/tex]:
[tex]\[ x^2 + \frac{1}{x^2} = 36 - 2 \][/tex]
[tex]\[ x^2 + \frac{1}{x^2} = 34 \][/tex]
Therefore, the value of [tex]\( x^2 + \frac{1}{x^2} \)[/tex] is [tex]\( 34 \)[/tex].
The correct answer is:
b) 34
1. Start with the given equation:
[tex]\[ x + \frac{1}{x} = 6 \][/tex]
2. Square both sides of the equation:
[tex]\[ \left( x + \frac{1}{x} \right)^2 = 6^2 \][/tex]
3. Expand the left-hand side using the algebraic identity [tex]\((a + b)^2 = a^2 + 2ab + b^2\)[/tex]:
[tex]\[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 36 \][/tex]
4. Simplify the expanded equation:
[tex]\[ x^2 + 2 + \frac{1}{x^2} = 36 \][/tex]
5. Isolate [tex]\( x^2 + \frac{1}{x^2} \)[/tex]:
[tex]\[ x^2 + \frac{1}{x^2} = 36 - 2 \][/tex]
[tex]\[ x^2 + \frac{1}{x^2} = 34 \][/tex]
Therefore, the value of [tex]\( x^2 + \frac{1}{x^2} \)[/tex] is [tex]\( 34 \)[/tex].
The correct answer is:
b) 34
Answer:
34
Step-by-step explanation:
To find [tex]x^2 + \frac{1}{x^2}[/tex], we start with the given equation [tex]x + \frac{1}{x} = 6 .[/tex]
First, square both sides of the equation:
[tex]\left( x + \frac{1}{x} \right)^2 = 6^2[/tex]
[tex]x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 36[/tex]
[tex]x^2 + 2 + \frac{1}{x^2} = 36[/tex]
Now, subtract 2 from both sides:
[tex]x^2 + \frac{1}{x^2} = 36 - 2[/tex]
[tex]x^2 + \frac{1}{x^2} = 34[/tex]