Answer :
To find the determinant of the matrix
[tex]\[ \begin{vmatrix} a + x & -b & c \\ a & b + y & c \\ a & b & c + 2 \end{vmatrix}, \][/tex]
we will use the method of cofactor expansion (also known as Laplace expansion). We will expand along the first row.
The matrix is
[tex]\[ \begin{vmatrix} a + x & -b & c \\ a & b + y & c \\ a & b & c + 2 \end{vmatrix}. \][/tex]
### Step 1: Cofactor Expansion Along the First Row
The determinant is given by:
[tex]\[ \det(A) = (a + x) \cdot \begin{vmatrix} b + y & c \\ b & c + 2 \end{vmatrix} - (-b) \cdot \begin{vmatrix} a & c \\ a & c + 2 \end{vmatrix} + c \cdot \begin{vmatrix} a & b + y \\ a & b \end{vmatrix}. \][/tex]
### Step 2: Compute the 2x2 Determinants
1. First Minor:
[tex]\[ \begin{vmatrix} b + y & c \\ b & c + 2 \end{vmatrix} = (b + y)(c + 2) - bc = bc + 2b + yc + 2y - bc = 2b + yc + 2y. \][/tex]
2. Second Minor:
[tex]\[ \begin{vmatrix} a & c \\ a & c + 2 \end{vmatrix} = a(c + 2) - ac = ac + 2a - ac = 2a. \][/tex]
3. Third Minor:
[tex]\[ \begin{vmatrix} a & b + y \\ a & b \end{vmatrix} = a \cdot b - a \cdot (b + y) = ab - ab - ay = -ay. \][/tex]
### Step 3: Substitute the Values Back into the Determinant Formula
Now substitute the computed minors back:
[tex]\[ \det(A) = (a + x)(2b + yc + 2y) - (-b)(2a) + c(-ay). \][/tex]
### Step 4: Simplify the Expression
1. Expand First Term:
[tex]\[ (a + x)(2b + yc + 2y) = a(2b + yc + 2y) + x(2b + yc + 2y) = 2ab + ayc + 2ay + 2bx + xyc + 2xy. \][/tex]
2. Simplify Second Term:
[tex]\[ - (-b)(2a) = 2ab. \][/tex]
3. Simplify Third Term:
[tex]\[ c(-ay) = -acy. \][/tex]
Putting these together:
[tex]\[ \det(A) = (2ab + ayc + 2ay + 2bx + xyc + 2xy) + 2ab - acy. \][/tex]
Notice the [tex]\( + ayc \)[/tex] and [tex]\( - acy \)[/tex] cancel each other:
[tex]\[ \det(A) = 2ab + 2ab + 2ay + 2bx + xyc + 2xy = 4ab + 2ay + 2bx + xyc + 2xy. \][/tex]
Therefore, the determinant of the given matrix is:
[tex]\[ 4ab + 2ay + 2bx + xyc + 2xy. \][/tex]
[tex]\[ \begin{vmatrix} a + x & -b & c \\ a & b + y & c \\ a & b & c + 2 \end{vmatrix}, \][/tex]
we will use the method of cofactor expansion (also known as Laplace expansion). We will expand along the first row.
The matrix is
[tex]\[ \begin{vmatrix} a + x & -b & c \\ a & b + y & c \\ a & b & c + 2 \end{vmatrix}. \][/tex]
### Step 1: Cofactor Expansion Along the First Row
The determinant is given by:
[tex]\[ \det(A) = (a + x) \cdot \begin{vmatrix} b + y & c \\ b & c + 2 \end{vmatrix} - (-b) \cdot \begin{vmatrix} a & c \\ a & c + 2 \end{vmatrix} + c \cdot \begin{vmatrix} a & b + y \\ a & b \end{vmatrix}. \][/tex]
### Step 2: Compute the 2x2 Determinants
1. First Minor:
[tex]\[ \begin{vmatrix} b + y & c \\ b & c + 2 \end{vmatrix} = (b + y)(c + 2) - bc = bc + 2b + yc + 2y - bc = 2b + yc + 2y. \][/tex]
2. Second Minor:
[tex]\[ \begin{vmatrix} a & c \\ a & c + 2 \end{vmatrix} = a(c + 2) - ac = ac + 2a - ac = 2a. \][/tex]
3. Third Minor:
[tex]\[ \begin{vmatrix} a & b + y \\ a & b \end{vmatrix} = a \cdot b - a \cdot (b + y) = ab - ab - ay = -ay. \][/tex]
### Step 3: Substitute the Values Back into the Determinant Formula
Now substitute the computed minors back:
[tex]\[ \det(A) = (a + x)(2b + yc + 2y) - (-b)(2a) + c(-ay). \][/tex]
### Step 4: Simplify the Expression
1. Expand First Term:
[tex]\[ (a + x)(2b + yc + 2y) = a(2b + yc + 2y) + x(2b + yc + 2y) = 2ab + ayc + 2ay + 2bx + xyc + 2xy. \][/tex]
2. Simplify Second Term:
[tex]\[ - (-b)(2a) = 2ab. \][/tex]
3. Simplify Third Term:
[tex]\[ c(-ay) = -acy. \][/tex]
Putting these together:
[tex]\[ \det(A) = (2ab + ayc + 2ay + 2bx + xyc + 2xy) + 2ab - acy. \][/tex]
Notice the [tex]\( + ayc \)[/tex] and [tex]\( - acy \)[/tex] cancel each other:
[tex]\[ \det(A) = 2ab + 2ab + 2ay + 2bx + xyc + 2xy = 4ab + 2ay + 2bx + xyc + 2xy. \][/tex]
Therefore, the determinant of the given matrix is:
[tex]\[ 4ab + 2ay + 2bx + xyc + 2xy. \][/tex]