Simplify the expression. Write the answer using scientific notation.

[tex]\[
\left(5 \times 10^7\right)\left(6 \times 10^4\right)
\][/tex]

A. [tex]\(3.0 \times 10^{12}\)[/tex]

B. [tex]\(1.1 \times 10^{29}\)[/tex]

C. [tex]\(1.1 \times 10^{12}\)[/tex]

D. [tex]\(3.0 \times 10^{29}\)[/tex]



Answer :

To simplify the expression [tex]\((5 \times 10^7)(6 \times 10^4)\)[/tex] and write the answer in scientific notation, we can follow these steps:

1. Separate the Coefficients and the Powers of 10:
- The expression can be split into two parts: the coefficients and the powers of 10.

- Coefficients: [tex]\(5\)[/tex] and [tex]\(6\)[/tex]
- Powers of 10: [tex]\(10^7\)[/tex] and [tex]\(10^4\)[/tex]

2. Multiply the Coefficients:
- Multiply [tex]\(5\)[/tex] and [tex]\(6\)[/tex]:
[tex]\[ 5 \times 6 = 30 \][/tex]

3. Add the Exponents in the Powers of 10:
- When you multiply powers of 10, you add the exponents:
[tex]\[ 10^7 \times 10^4 = 10^{7+4} = 10^{11} \][/tex]

4. Combine the Results:
- Combine the product of the coefficients with the new power of 10:
[tex]\[ 30 \times 10^{11} \][/tex]

5. Write the Final Answer in Scientific Notation:
- The appropriate scientific notation should have a single digit before the decimal point. Since [tex]\(30\)[/tex] can be written as [tex]\(3.0 \times 10^1\)[/tex], we can rewrite the answer as:
[tex]\[ 3.0 \times 10^1 \times 10^{11} = 3.0 \times 10^{1+11} = 3.0 \times 10^{12} \][/tex]

Thus, the simplified expression in scientific notation is:
[tex]\[ 3.0 \times 10^{12} \][/tex]

So, the correct answer is:
[tex]\[ 3.0 \times 10^{12} \][/tex]