Answer :
Of course, let's simplify the given mathematical expression [tex]\(5 \times t \times u \times 7\)[/tex].
1. Identify the constants and the variables:
- Constants: [tex]\(5\)[/tex] and [tex]\(7\)[/tex]
- Variables: [tex]\(t\)[/tex] and [tex]\(u\)[/tex]
2. Combine the constants:
- Multiply the constants [tex]\(5\)[/tex] and [tex]\(7\)[/tex]:
[tex]\[ 5 \times 7 = 35 \][/tex]
3. Rewrite the expression with the combined constant:
- When you multiply [tex]\(35\)[/tex] by variables [tex]\(t\)[/tex] and [tex]\(u\)[/tex], the expression becomes:
[tex]\[ 35 \times t \times u \][/tex]
4. Combine the variables and the constant into one expression:
- The simplified form of the expression is:
[tex]\[ 35tu \][/tex]
So, the simplified form of [tex]\(5 \times t \times u \times 7\)[/tex] is [tex]\(35tu\)[/tex].
1. Identify the constants and the variables:
- Constants: [tex]\(5\)[/tex] and [tex]\(7\)[/tex]
- Variables: [tex]\(t\)[/tex] and [tex]\(u\)[/tex]
2. Combine the constants:
- Multiply the constants [tex]\(5\)[/tex] and [tex]\(7\)[/tex]:
[tex]\[ 5 \times 7 = 35 \][/tex]
3. Rewrite the expression with the combined constant:
- When you multiply [tex]\(35\)[/tex] by variables [tex]\(t\)[/tex] and [tex]\(u\)[/tex], the expression becomes:
[tex]\[ 35 \times t \times u \][/tex]
4. Combine the variables and the constant into one expression:
- The simplified form of the expression is:
[tex]\[ 35tu \][/tex]
So, the simplified form of [tex]\(5 \times t \times u \times 7\)[/tex] is [tex]\(35tu\)[/tex].