Answer :

Let's evaluate the expression:
[tex]\[ \frac{\log 6^5 - \log 5^6}{\log 6^{\frac{1}{5}} + \log 5^6} \][/tex]

### Step-by-step Solution:

1. Simplify the terms involving logarithms:
- Recall the properties of logarithms: [tex]\(\log a^b = b \log a\)[/tex].
- Apply this property to each term in the numerator and denominator.

2. Simplify the numerator:
[tex]\[ \log 6^5 - \log 5^6 = 5 \log 6 - 6 \log 5 \][/tex]

3. Simplify the denominator:
[tex]\[ \log 6^{\frac{1}{5}} + \log 5^6 = \frac{1}{5} \log 6 + 6 \log 5 \][/tex]

4. Combine the simplified terms:
The fraction now looks like:
[tex]\[ \frac{5 \log 6 - 6 \log 5}{\frac{1}{5} \log 6 + 6 \log 5} \][/tex]

5. Evaluate the simplified form:
- Use the given logarithmic values and respective calculations.
- Numerator: [tex]\( 5 \log 6 - 6 \log 5 = -0.6978301284643287 \)[/tex]
- Denominator: [tex]\( \frac{1}{5} \log 6 + 6 \log 5 = 10.014979368450215 \)[/tex]

6. Calculate the final value of the expression:
[tex]\[ \frac{-0.6978301284643287}{10.014979368450215} = -0.06967863864629364 \][/tex]

### Conclusion:
Thus, the value of the expression is:
[tex]\[ \boxed{-0.06967863864629364} \][/tex]