Sure, let's convert the given speed and fill in the boxes with the correct values.
First, we need to convert the speed from miles per hour ([tex]$\frac{\text {mph}}{\text{hour}}$[/tex]) to kilometers per hour ([tex]$\frac{\text {km}}{\text{hour}}$[/tex]). Given the conversion rate is [tex]$1 \text{ mile} = 1.61 \text{ kilometers}$[/tex]:
[tex]\[ 99 \text{ miles per hour} \times 1.61 \frac{\text {kilometers}}{\text{mile}} = 159.4 \frac{\text {kilometers}}{\text{hour}} \][/tex]
Next, we convert this speed to kilometers per minute ([tex]$\frac{\text {kilometers}}{\text{minute}}$[/tex]). We know that there are 60 minutes in an hour:
[tex]\[ 159.4 \frac{\text {kilometers}}{\text{hour}} \div 60 \frac{\text{minutes}}{\text{hour}} = 2.7 \frac{\text {kilometers}}{\text{minute}} \][/tex]
Thus, the speed of 99 miles per hour is equivalent to:
[tex]$\boxed{159.4}$[/tex] [tex]$\frac{\text {kilometers}}{\text{hour}}$[/tex], or
[tex]$\boxed{2.7}$[/tex] [tex]$\frac{\text {kilometers}}{\text{minute}}$[/tex].