Type the correct answer in each box. Use numerals instead of words.

A race car is driven by a professional driver at 99 miles per hour. What is this speed in [tex] \frac{\text{kilometers}}{\text{hour}} [/tex] and [tex] \frac{\text{kilometers}}{\text{minute}} [/tex]?

1 mile = 1.61 kilometers
1 hour = 60 minutes

Round your answers to the nearest tenth.

The speed is equivalent to [tex] \square \, \frac{\text{kilometers}}{\text{hour}} [/tex], or [tex] \square \, \frac{\text{kilometers}}{\text{minute}} [/tex].



Answer :

Sure, let's convert the given speed and fill in the boxes with the correct values.

First, we need to convert the speed from miles per hour ([tex]$\frac{\text {mph}}{\text{hour}}$[/tex]) to kilometers per hour ([tex]$\frac{\text {km}}{\text{hour}}$[/tex]). Given the conversion rate is [tex]$1 \text{ mile} = 1.61 \text{ kilometers}$[/tex]:

[tex]\[ 99 \text{ miles per hour} \times 1.61 \frac{\text {kilometers}}{\text{mile}} = 159.4 \frac{\text {kilometers}}{\text{hour}} \][/tex]

Next, we convert this speed to kilometers per minute ([tex]$\frac{\text {kilometers}}{\text{minute}}$[/tex]). We know that there are 60 minutes in an hour:
[tex]\[ 159.4 \frac{\text {kilometers}}{\text{hour}} \div 60 \frac{\text{minutes}}{\text{hour}} = 2.7 \frac{\text {kilometers}}{\text{minute}} \][/tex]

Thus, the speed of 99 miles per hour is equivalent to:

[tex]$\boxed{159.4}$[/tex] [tex]$\frac{\text {kilometers}}{\text{hour}}$[/tex], or

[tex]$\boxed{2.7}$[/tex] [tex]$\frac{\text {kilometers}}{\text{minute}}$[/tex].