Select the correct answer.

What is the range of the function [tex]f(x) = 4x + 9[/tex], given the domain [tex]D = \{-4, -2, 0, 2\}[/tex]?

A. [tex]R = \{-7, -1, 9, 17\}[/tex]

B. [tex]R = \{-17, -9, -1, 17\}[/tex]

C. [tex]R = \{-7, 1, 9, 17\}[/tex]

D. [tex]R = \{1, 7, 9, 17\}[/tex]



Answer :

To determine the range of the function [tex]\( f(x) = 4x + 9 \)[/tex] given the domain [tex]\( D = \{-4, -2, 0, 2\} \)[/tex], we need to evaluate the function at each value in the domain.

1. Calculate [tex]\( f(-4) \)[/tex]:
[tex]\[ f(-4) = 4(-4) + 9 = -16 + 9 = -7 \][/tex]

2. Calculate [tex]\( f(-2) \)[/tex]:
[tex]\[ f(-2) = 4(-2) + 9 = -8 + 9 = 1 \][/tex]

3. Calculate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4(0) + 9 = 0 + 9 = 9 \][/tex]

4. Calculate [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 4(2) + 9 = 8 + 9 = 17 \][/tex]

So, the values of the function for the given domain are:
[tex]\[ \{-7, 1, 9, 17\} \][/tex]

Therefore, the range [tex]\( R \)[/tex] of the function [tex]\( f(x) = 4x + 9 \)[/tex] for the domain [tex]\( D = \{-4, -2, 0, 2\} \)[/tex] is:
[tex]\[ R = \{-7, 1, 9, 17\} \][/tex]

The correct answer is:
C. [tex]\( R = \{-7, 1, 9, 17\} \)[/tex]