Simplify the expression. Write the answer using scientific notation.

[tex]\[ \left(9 \times 10^7\right)\left(7 \times 10^9\right) \][/tex]

A. [tex]\(6.3 \times 10^{17}\)[/tex]

B. [tex]\(1.6 \times 10^{64}\)[/tex]

C. [tex]\(1.6 \times 10^{17}\)[/tex]

D. [tex]\(6.3 \times 10^{64}\)[/tex]



Answer :

Sure! Let's break down the problem step-by-step to simplify the expression [tex]\(\left(9 \times 10^7\right)\left(7 \times 10^9\right)\)[/tex] and write the answer in scientific notation.

1. Step 1: Write the expression to be simplified.

[tex]\[ (9 \times 10^7) \times (7 \times 10^9) \][/tex]

2. Step 2: Multiply the coefficients (the numbers in front).

[tex]\[ 9 \times 7 = 63 \][/tex]

3. Step 3: Multiply the powers of 10 by adding the exponents.

[tex]\[ 10^7 \times 10^9 = 10^{7 + 9} = 10^{16} \][/tex]

4. Step 4: Combine the results from Steps 2 and 3.

[tex]\[ 63 \times 10^{16} \][/tex]

5. Step 5: Convert this number into proper scientific notation.

To write [tex]\(63 \times 10^{16}\)[/tex] in scientific notation, we need to express the coefficient as a number between 1 and 10. [tex]\(63\)[/tex] can be rewritten as [tex]\(6.3 \times 10^1\)[/tex].

[tex]\[ 63 \times 10^{16} = (6.3 \times 10^1) \times 10^{16} \][/tex]

Using the property of exponents, we can combine the powers of 10:

[tex]\[ (6.3 \times 10^1) \times 10^{16} = 6.3 \times 10^{1 + 16} = 6.3 \times 10^{17} \][/tex]

6. Step 6: Verify the options.

We compare [tex]\(6.3 \times 10^{17}\)[/tex] with the given multiple choice options:
- [tex]\(6.3 \times 10^{17}\)[/tex]
- [tex]\(1.6 \times 10^{64}\)[/tex]
- [tex]\(1.6 \times 10^{17}\)[/tex]
- [tex]\(6.3 \times 10^{64}\)[/tex]

The correct answer is [tex]\(6.3 \times 10^{17}\)[/tex].

So, the simplified expression in scientific notation is:

[tex]\[ \boxed{6.3 \times 10^{17}} \][/tex]