The reciprocal of [tex]$\frac{6}{7} \times \frac{2}{3}$[/tex] is

A. [tex]$\frac{-4}{7}$[/tex]
B. [tex][tex]$\frac{-7}{4}$[/tex][/tex]
C. [tex]$\frac{7}{4}$[/tex]



Answer :

To solve this problem, let’s work through it step by step.

First, we need to find the product of [tex]\(\frac{6}{7}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex]:

1. Multiply the two fractions:
[tex]\[ \frac{6}{7} \times \frac{2}{3} = \frac{6 \times 2}{7 \times 3} = \frac{12}{21} \][/tex]

2. Simplify the fraction:
[tex]\[ \frac{12}{21} = \frac{4}{7} \quad \text{(since both the numerator and the denominator can be divided by 3)} \][/tex]

So, the product of [tex]\(\frac{6}{7}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex] is [tex]\(\frac{4}{7}\)[/tex].

Next, we need to find the reciprocal of this product. The reciprocal of a number is given by exchanging the numerator and the denominator.

3. Find the reciprocal:
[tex]\[ \text{Reciprocal of } \frac{4}{7} = \frac{7}{4} \][/tex]

Thus, the reciprocal of [tex]\(\frac{6}{7} \times \frac{2}{3}\)[/tex] is:
[tex]\[ \frac{7}{4} \][/tex]

Given the answer choices:
- [tex]$\frac{-4}{7}$[/tex]
- [tex]$\frac{-7}{4}$[/tex]
- [tex]$\frac{7}{4}$[/tex]

The correct answer is:
[tex]\[ \boxed{\frac{7}{4}} \][/tex]