A solid right pyramid has a square base with an edge length of [tex]$x \, \text{cm}$[/tex] and a height of [tex]$y \, \text{cm}$[/tex].

Which expression represents the volume of the pyramid?

A. [tex]\frac{1}{3} x y \, \text{cm}^3[/tex]
B. [tex]\frac{1}{3} x^2 y \, \text{cm}^3[/tex]
C. [tex]\frac{1}{2} x y^2 \, \text{cm}^3[/tex]
D. [tex]\frac{1}{2} x^2 y \, \text{cm}^3[/tex]



Answer :

To find the volume of a solid right pyramid with a square base, we need to use the formula for the volume of a pyramid. The general formula for the volume [tex]\( V \)[/tex] of a pyramid is:

[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]

Given that the base of the pyramid is a square, the area of the base (which we will denote as [tex]\( \text{Base Area} \)[/tex]) can be calculated using the edge length of the square (denoted as [tex]\( x \)[/tex]). The area of a square is given by:

[tex]\[ \text{Base Area} = x^2 \][/tex]

We are also given the height of the pyramid (denoted as [tex]\( y \)[/tex]). Plugging these values into our volume formula, we get:

[tex]\[ V = \frac{1}{3} \times x^2 \times y \][/tex]

So, the expression that represents the volume of the pyramid is:

[tex]\[ \frac{1}{3} x^2 y \, \text{cm}^3 \][/tex]

Among the given options, this matches with:

[tex]\[ \frac{1}{3} x^2 y \, \text{cm}^3 \][/tex]

Therefore, the correct option is:

[tex]\[ \boxed{\frac{1}{3} x^2 y \, \text{cm}^3} \][/tex]