Type the correct answer in each box. Round your answers to the nearest cent, if necessary.

Marci has taken out a loan of [tex]$\$ 5,000$[/tex] for a term of 24 months (2 years) at an interest rate of [tex]$8.5\%$[/tex]. Use the amortization table provided to complete the statement.

\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{7}{|c|}{Monthly Payment per [tex]$\[tex]$1,000$[/tex][/tex] of Principal} \\
\hline Rate & 1 Year & 2 Years & 3 Years & 4 Years & 5 Years \\
\hline [tex]$6.5\%$[/tex] & [tex][tex]$\$[/tex]86.30$[/tex] & [tex]$\$44.55$[/tex] & [tex][tex]$\$[/tex]30.65$[/tex] & [tex]$\$23.71$[/tex] & [tex][tex]$\$[/tex]19.57$[/tex] \\
\hline [tex]$7.0\%$[/tex] & [tex]$\[tex]$86.53$[/tex][/tex] & [tex]$\$44.77$[/tex] & [tex]$\[tex]$30.88$[/tex][/tex] & [tex]$\$23.95$[/tex] & [tex]$\[tex]$19.80$[/tex][/tex] \\
\hline [tex]$7.5\%$[/tex] & [tex][tex]$\$[/tex]86.76$[/tex] & [tex]$\$45.00$[/tex] & [tex][tex]$\$[/tex]31.11$[/tex] & [tex]$\$24.18$[/tex] & [tex][tex]$\$[/tex]20.04$[/tex] \\
\hline [tex]$8.0\%$[/tex] & [tex]$\[tex]$86.99$[/tex][/tex] & [tex]$\$45.23$[/tex] & [tex]$\[tex]$31.34$[/tex][/tex] & [tex]$\$24.41$[/tex] & [tex]$\[tex]$20.28$[/tex][/tex] \\
\hline [tex]$8.5\%$[/tex] & [tex][tex]$\$[/tex]87.22$[/tex] & [tex]$\$45.46$[/tex] & [tex][tex]$\$[/tex]31.57$[/tex] & [tex]$\$24.65$[/tex] & [tex][tex]$\$[/tex]20.52$[/tex] \\
\hline [tex]$9.0\%$[/tex] & [tex]$\[tex]$87.45$[/tex][/tex] & [tex]$\$45.68$[/tex] & [tex]$\[tex]$31.80$[/tex][/tex] & [tex]$\$24.89$[/tex] & [tex]$\[tex]$20.76$[/tex][/tex] \\
\hline
\end{tabular}

Marci's monthly payment will be [tex]$\$ \square$[/tex], and her total finance charge over the course of the loan will be [tex]$\[tex]$ \square$[/tex][/tex].



Answer :

To solve this problem, we need to find Marci's monthly payment and the total finance charge over the course of her loan using the amortization table provided for a loan of \[tex]$5,000 over 2 years at an 8.5% interest rate. ### Step-by-Step Solution: 1. Identify the monthly payment per \$[/tex]1,000 of principal:
- From the provided amortization table, for a 2-year term at an 8.5% interest rate, the monthly payment per \[tex]$1,000 of principal is \$[/tex]45.46.

2. Calculate the total monthly payment for the loan amount:
- The loan amount is \[tex]$5,000. - The monthly payment per \$[/tex]1,000 is \[tex]$45.46. - To find the monthly payment for the entire loan amount: \[ \text{Monthly Payment} = \left( \frac{5000}{1000} \right) \times 45.46 = 5 \times 45.46 = 227.30 \] - Therefore, Marci's monthly payment will be \$[/tex]227.30.

3. Calculate the total payment over the term of the loan:
- Marci will make payments for 24 months (2 years).
- The total number of payments is [tex]\(24\)[/tex] months.
[tex]\[ \text{Total Payment} = \text{Monthly Payment} \times \text{Number of Payments} = 227.30 \times 24 = 5455.20 \][/tex]

4. Calculate the total finance charge:
- The total finance charge is the total amount paid minus the loan amount.
[tex]\[ \text{Total Finance Charge} = \text{Total Payment} - \text{Loan Amount} = 5455.20 - 5000 = 455.20 \][/tex]

### Final Answer:
- Marci's monthly payment will be [tex]$227.30, and her total finance charge over the course of the loan will be $[/tex]455.20.