What is the value of the element in row 1, column 1 of matrix [tex]X[/tex]?

[tex]\[
\begin{bmatrix}
4 & y \\
0 & 1
\end{bmatrix}
X =
\begin{bmatrix}
y \\
4
\end{bmatrix}
\][/tex]

A. [tex]-\frac{3y}{4}[/tex]

B. 4

C. 8

D. 0



Answer :

To find the value of the element in row 1, column 1 of the given matrix [tex]\( X \)[/tex], we need to analyze the matrix equation:

[tex]\[ \begin{bmatrix} 4 & y \\ 0 & 1 \end{bmatrix} x = \begin{bmatrix} y \\ 4 \end{bmatrix} \][/tex]

Given the options:
- [tex]\(-\frac{3y}{4}\)[/tex]
- 4
- 8
- 0

we are particularly interested in the element at row 1, column 1 of the matrix [tex]\( X \)[/tex].

The matrix provided:
[tex]\[ A = \begin{bmatrix} 4 & y \\ 0 & 1 \end{bmatrix} \][/tex]
and the vector:
[tex]\[ x = \begin{bmatrix} y \\ 4 \end{bmatrix} \][/tex]

In this context, the element in row 1, column 1 of the matrix [tex]\( A \)[/tex] is clearly:

[tex]\[ A[0, 0] = 4 \][/tex]

Therefore, the value of the element in row 1, column 1 of the matrix [tex]\( A \)[/tex] is:
[tex]\[ \boxed{4} \][/tex]