Answer :

To solve the given system of equations using the addition method, follow these steps:

1. Write down the given system of equations:
[tex]\[ \begin{cases} 7x + 3y = 10 \quad \text{(Equation 1)} \\ 4x + 4y = 8 \quad \text{(Equation 2)} \end{cases} \][/tex]

2. Aim for elimination of one variable by making the coefficients of either [tex]\( y \)[/tex] or [tex]\( x \)[/tex] the same in both equations. Here, we will eliminate [tex]\( y \)[/tex]. To do this, we need the coefficients of [tex]\( y \)[/tex] in both equations to be the same.

- Multiply Equation 1 by 4:
[tex]\[ 4(7x + 3y) = 4 \cdot 10 \implies 28x + 12y = 40 \quad \text{(Equation 3)} \][/tex]
- Multiply Equation 2 by 3:
[tex]\[ 3(4x + 4y) = 3 \cdot 8 \implies 12x + 12y = 24 \quad \text{(Equation 4)} \][/tex]

3. Subtract Equation 4 from Equation 3 to eliminate [tex]\( y \)[/tex]:
[tex]\[ (28x + 12y) - (12x + 12y) = 40 - 24 \][/tex]
Simplifying, we get:
[tex]\[ (28x - 12x) + (12y - 12y) = 16 \][/tex]
[tex]\[ 16x = 16 \][/tex]

4. Solve for [tex]\( x \)[/tex]:
[tex]\[ 16x = 16 \][/tex]
[tex]\[ x = \frac{16}{16} \][/tex]
[tex]\[ x = 1 \][/tex]

5. Substitute [tex]\( x = 1 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's use Equation 2:
[tex]\[ 4x + 4y = 8 \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ 4(1) + 4y = 8 \][/tex]
[tex]\[ 4 + 4y = 8 \][/tex]
[tex]\[ 4y = 8 - 4 \][/tex]
[tex]\[ 4y = 4 \][/tex]
[tex]\[ y = \frac{4}{4} \][/tex]
[tex]\[ y = 1 \][/tex]

Thus, the solution set is [tex]\((x, y) = (1, 1)\)[/tex].

[tex]\[ \boxed{(1, 1)} \][/tex]