What is [tex]\( 270^\circ \)[/tex] converted to radians?

A. [tex]\(\frac{\pi}{6}\)[/tex]

B. [tex]\(\frac{3}{2}\)[/tex]

C. [tex]\(\frac{3\pi}{2}\)[/tex]

D. 3



Answer :

To convert an angle from degrees to radians, we use the conversion factor:

[tex]\[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \][/tex]

Given an angle of [tex]\( 270^\circ \)[/tex]:

1. Multiply the angle in degrees by the conversion factor:
[tex]\[ 270^\circ \times \frac{\pi}{180} \][/tex]

2. Simplify the expression:
- The degrees cancel out, leaving us with the fraction:
[tex]\[ \frac{270 \pi}{180} \][/tex]
- Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 90:
[tex]\[ \frac{270 \div 90}{180 \div 90} \pi = \frac{3 \pi}{2} \][/tex]

Therefore, [tex]\( 270^\circ \)[/tex] converted to radians is:

[tex]\[ \frac{3 \pi}{2} \][/tex]

Comparing this result with the answer choices provided:

[tex]\[ \frac{\pi}{6}, \quad \frac{3}{2}, \quad \frac{3 \pi}{2}, \quad 3 \][/tex]

The correct answer is:

[tex]\[ \boxed{\frac{3\pi}{2}} \][/tex]