Select the statement that describes this expression: [tex]$8+\frac{1}{2} \times(6-2)-1$[/tex].

A. 8 more than half the difference of 2 and 1, and then subtract 6
B. Add 8 to half the difference of 6 and 2, then subtract 1
C. The sum of 8 and [tex]$\frac{1}{2}$[/tex] times 6 plus 2 minus 1



Answer :

Sure, let's analyze the expression [tex]\(8 + \frac{1}{2} \times (6 - 2) - 1\)[/tex] to understand which statement accurately describes it.

1. First, we need to evaluate the terms within the parentheses:
[tex]\[ 6 - 2 = 4 \][/tex]

2. Next, we take half of this result:
[tex]\[ \frac{1}{2} \times 4 = 2 \][/tex]

3. Add this to 8:
[tex]\[ 8 + 2 = 10 \][/tex]

4. Finally, we subtract 1:
[tex]\[ 10 - 1 = 9 \][/tex]

Now, let’s find the description that matches this operation:

1. 8 more than half the difference of 2 and 1, and then subtract 6:
[tex]\[ 8 + \frac{1}{2} \times (2 - 1) - 6 \][/tex]
Simplifying inside the parentheses:
[tex]\[ 2 - 1 = 1 \][/tex]
Taking half:
[tex]\[ \frac{1}{2} \times 1 = 0.5 \][/tex]
Adding to 8:
[tex]\[ 8 + 0.5 = 8.5 \][/tex]
Subtract 6:
[tex]\[ 8.5 - 6 = 2.5 \][/tex]
This does not match our expression which evaluates to 9.

2. Add 8 to half the difference of 6 and 2, then subtract 1:
[tex]\[ 8 + \frac{1}{2} \times (6 - 2) - 1 \][/tex]
Simplifying inside the parentheses:
[tex]\[ 6 - 2 = 4 \][/tex]
Taking half:
[tex]\[ \frac{1}{2} \times 4 = 2 \][/tex]
Adding to 8:
[tex]\[ 8 + 2 = 10 \][/tex]
Finally, subtract 1:
[tex]\[ 10 - 1 = 9 \][/tex]
This matches our calculated expression.

3. The sum of 8 and [tex]\(\frac{1}{2}\)[/tex] times 6 plus 2 minus 1:
[tex]\[ 8 + \frac{1}{2} \times 6 + 2 - 1 \][/tex]
First evaluate the part multiplication:
[tex]\[ \frac{1}{2} \times 6 = 3 \][/tex]
Then sum with 8:
[tex]\[ 8 + 3 = 11 \][/tex]
Add 2:
[tex]\[ 11 + 2 = 13 \][/tex]
Subtract 1:
[tex]\[ 13 - 1 = 12 \][/tex]
This does not match our expression which evaluates to 9.

The correct statement is: Add 8 to half the difference of 6 and 2, then subtract 1.

So, the answer is Option 2.