Which of the following linear equations represents the data chart below?

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
1 & 8 \\
\hline
2 & 11 \\
\hline
3 & 14 \\
\hline
4 & 17 \\
\hline
\end{tabular}
\][/tex]

[tex]\[
\begin{array}{l}
A. \; y = 3x + 5 \\
B. \; y = x - 5 \\
C. \; y = 3x + 11 \\
D. \; None of these choices are correct.
\end{array}
\][/tex]



Answer :

To determine which linear equation represents the data chart accurately, we need to find the slope and the y-intercept of the line passing through the given points (1, 8), (2, 11), (3, 14), and (4, 17).

Let's start with the slope ([tex]\(m\)[/tex]) calculation:

[tex]\[ m = \frac{{y_2 - y_1}}{{x_2 - x_1}} \][/tex]

Using the first two points, [tex]\((x_1, y_1) = (1, 8)\)[/tex] and [tex]\((x_2, y_2) = (2, 11)\)[/tex]:

[tex]\[ m = \frac{{11 - 8}}{{2 - 1}} = \frac{3}{1} = 3 \][/tex]

So, the slope of the line is [tex]\(3\)[/tex].

Next, we need to find the y-intercept ([tex]\(b\)[/tex]) using the formula [tex]\( y = mx + b \)[/tex]:

Using the point [tex]\((1, 8)\)[/tex] and the slope [tex]\(3\)[/tex]:

[tex]\[ 8 = 3 \cdot 1 + b \implies 8 = 3 + b \implies b = 8 - 3 = 5 \][/tex]

Therefore, the equation of the line is:

[tex]\[ y = 3x + 5 \][/tex]

Now, let's compare this with the given choices:

1. [tex]\( y = 3x + 5 \)[/tex]
2. [tex]\( y = x - 5 \)[/tex]
3. [tex]\( y = 3x + 11 \)[/tex]

Comparing our derived equation [tex]\( y = 3x + 5 \)[/tex] with the options given, we see that the correct equation is:

[tex]\[ y = 3x + 5 \][/tex]

Therefore, the linear equation that represents the data chart is:

[tex]\[ \boxed{y = 3x + 5} \][/tex]