Which ordered pair makes both inequalities true?

[tex]\[
\begin{array}{l}
y \ \textless \ 3x - 1 \\
y \geq -x + 4
\end{array}
\][/tex]

A. (4, 0)
B. (1, 2)
C. (0, 4)



Answer :

To determine which ordered pair satisfies both inequalities:
[tex]\[ \begin{array}{l} y < 3x - 1 \\ y \geq -x + 4 \end{array} \][/tex]
we will check each pair individually:

1. Check the pair [tex]\((4, 0)\)[/tex]:
[tex]\[ \begin{array}{l} \text{First inequality:} \\ 0 < 3(4) - 1 \\ 0 < 12 - 1 \\ 0 < 11 \quad \text{(True)} \end{array} \][/tex]
[tex]\[ \begin{array}{l} \text{Second inequality:} \\ 0 \geq -(4) + 4 \\ 0 \geq -4 + 4 \\ 0 \geq 0 \quad \text{(True)} \end{array} \][/tex]

Both inequalities are satisfied by the pair [tex]\((4, 0)\)[/tex].

2. Check the pair [tex]\((1, 2)\)[/tex]:
[tex]\[ \begin{array}{l} \text{First inequality:} \\ 2 < 3(1) - 1 \\ 2 < 3 - 1 \\ 2 < 2 \quad \text{(False)} \end{array} \][/tex]
[tex]\[ \begin{array}{l} \text{Second inequality:} \\ 2 \geq -(1) + 4 \\ 2 \geq -1 + 4 \\ 2 \geq 3 \quad \text{(False)} \end{array} \][/tex]

Neither inequality is satisfied by the pair [tex]\((1, 2)\)[/tex].

3. Check the pair [tex]\((0, 4)\)[/tex]:
[tex]\[ \begin{array}{l} \text{First inequality:} \\ 4 < 3(0) - 1 \\ 4 < 0 - 1 \\ 4 < -1 \quad \text{(False)} \end{array} \][/tex]
[tex]\[ \begin{array}{l} \text{Second inequality:} \\ 4 \geq -(0) + 4 \\ 4 \geq 0 + 4 \\ 4 \geq 4 \quad \text{(True)} \end{array} \][/tex]

Only the second inequality is satisfied by the pair [tex]\((0, 4)\)[/tex].

After checking all pairs, the only pair that satisfies both inequalities is [tex]\((4, 0)\)[/tex].