Find the following characteristics of the function:
[tex]\[ y = -6 - \tan \left(x + \frac{\pi}{3}\right) \][/tex]

(a) Period
(b) Phase shift (if any)
(c) Range

(a) The period of [tex]\( y = -6 - \tan \left(x + \frac{\pi}{3}\right) \)[/tex] is [tex]\(\square\)[/tex].

(Type an exact answer, using [tex]\(\pi\)[/tex] as needed. Use integers or fractions for any numbers in the expression.)



Answer :

Alright, let's analyze the function [tex]\( y = -6 - \tan\left(x + \frac{\pi}{3}\right) \)[/tex] to determine its characteristics.

(a) Period:

To find the period of this tangent function, we recognize that the general form of the tangent function is [tex]\( \tan(bx + c) \)[/tex], where [tex]\( b \)[/tex] affects the period.

The period of [tex]\( \tan(x) \)[/tex] is [tex]\( \pi \)[/tex]. For a function [tex]\( \tan(bx + c) \)[/tex], the period is given by [tex]\( \frac{\pi}{|b|} \)[/tex].

In the given function [tex]\( \tan\left(x + \frac{\pi}{3}\right) \)[/tex], we compare it with the general form and see that [tex]\( b = 1 \)[/tex]. Therefore, the period is:

[tex]\[ \text{Period} = \frac{\pi}{|1|} = \pi \][/tex]

(b) Phase Shift:

The phase shift of the function [tex]\( \tan(bx + c) \)[/tex] is determined by [tex]\( \frac{-c}{b} \)[/tex].

Here, in [tex]\( \tan\left(x + \frac{\pi}{3}\right) \)[/tex], [tex]\( c = \frac{\pi}{3} \)[/tex] and [tex]\( b = 1 \)[/tex]. The phase shift is:

[tex]\[ \text{Phase Shift} = \frac{-\left(\frac{\pi}{3}\right)}{1} = -\frac{\pi}{3} \][/tex]

(c) Range:

The range of the tangent function [tex]\( \tan(x) \)[/tex] is all real numbers [tex]\( (-\infty, \infty) \)[/tex].

When we introduce a vertical shift or a constant, like in [tex]\( y = -6 - \tan\left(x + \frac{\pi}{3}\right) \)[/tex], the range of the function remains all real numbers because the vertical translation does not affect the range of the tangent function. Thus, the range of this function is also:

[tex]\[ \text{Range} = (-\infty, \infty) \][/tex]

To summarize, for the function [tex]\( y = -6 - \tan\left(x + \frac{\pi}{3}\right) \)[/tex]:

- The period is [tex]\( \pi \)[/tex].
- The phase shift is [tex]\( -\frac{\pi}{3} \)[/tex].
- The range is all real numbers [tex]\((- \infty, \infty)\)[/tex].