Point [tex]\(X\)[/tex] is located at [tex]\((2, -6)\)[/tex], and point [tex]\(Z\)[/tex] is located at [tex]\((0, 5)\)[/tex]. Find the [tex]\(y\)[/tex] value for the point [tex]\(Y\)[/tex] that is located [tex]\(\frac{1}{5}\)[/tex] the distance from point [tex]\(X\)[/tex] to point [tex]\(Z\)[/tex].

A. [tex]\(-3.6\)[/tex]
B. [tex]\(-3.8\)[/tex]
C. [tex]\(-4\)[/tex]
D. [tex]\(-4.2\)[/tex]



Answer :

To find the [tex]$y$[/tex] value for the point [tex]$Y$[/tex] that is located [tex]\(\frac{1}{5}\)[/tex] of the distance from point [tex]\(X\)[/tex] to point [tex]\(Z\)[/tex], follow these steps:

1. Identify the coordinates of points [tex]\(X\)[/tex] and [tex]\(Z\)[/tex].
- Point [tex]\(X\)[/tex] is [tex]\((2, -6)\)[/tex].
- Point [tex]\(Z\)[/tex] is [tex]\((0, 5)\)[/tex].

2. Determine the change in the [tex]$x$[/tex] and [tex]$y$[/tex] coordinates between the points [tex]\(X\)[/tex] and [tex]\(Z\)[/tex].
- Change in [tex]$x$[/tex] (denoted as [tex]\(\Delta x\)[/tex]): [tex]\(0 - 2 = -2\)[/tex].
- Change in [tex]$y$[/tex] (denoted as [tex]\(\Delta y\)[/tex]): [tex]\(5 - (-6) = 5 + 6 = 11\)[/tex].

3. Calculate the [tex]$y$[/tex] coordinate for point [tex]$Y$[/tex] that is [tex]\(\frac{1}{5}\)[/tex] of the way from point [tex]\(X\)[/tex] to point [tex]\(Z\)[/tex].
- We use the fractional distance [tex]\(\frac{1}{5}\)[/tex] to find the proportionate change in the [tex]$y$[/tex] coordinate.
- Proportional change in [tex]$y$[/tex]: [tex]\(\frac{1}{5} \times \Delta y = \frac{1}{5} \times 11 = \frac{11}{5} = 2.2\)[/tex].

4. Calculate the [tex]$y$[/tex] coordinate of point [tex]$Y$[/tex]:
- Start from the [tex]$y$[/tex] coordinate of point [tex]\(X\)[/tex], which is [tex]\(-6\)[/tex].
- Add the proportional change in [tex]$y$[/tex]: [tex]\(-6 + 2.2 = -3.8\)[/tex].

Thus, the [tex]$y$[/tex] value for point [tex]\(Y\)[/tex] is [tex]\(-3.8\)[/tex].

Answer: [tex]\(-3.8\)[/tex].