An electromagnetic wave has a frequency of [tex]4.0 \times 10^{18} \, \text{Hz}[/tex]. What is the wavelength of the wave? Use the equation [tex]\lambda=\frac{v}{f}[/tex] and [tex]3.0 \times 10^8 \, \text{m/s}[/tex] for the speed of light.

A. [tex]1.3 \times 10^{10} \, \text{m}[/tex]
B. [tex]7.5 \times 10^{-11} \, \text{m}[/tex]
C. [tex]7.5 \times 10^{26} \, \text{m}[/tex]
D. [tex]1.3 \times 10^{-26} \, \text{m}[/tex]



Answer :

To find the wavelength of an electromagnetic wave, you can use the formula:

[tex]\[ \lambda = \frac{v}{f} \][/tex]

where:
- [tex]\(\lambda\)[/tex] is the wavelength,
- [tex]\(v\)[/tex] is the speed of light, and
- [tex]\(f\)[/tex] is the frequency.

Given the values:
- The frequency [tex]\( f \)[/tex] is [tex]\( 4.0 \times 10^{18} \)[/tex] Hz.
- The speed of light [tex]\( v \)[/tex] is [tex]\( 3.0 \times 10^8 \)[/tex] m/s.

Substitute the given values into the formula:

[tex]\[ \lambda = \frac{3.0 \times 10^8 \, \text{m/s}}{4.0 \times 10^{18} \, \text{Hz}} \][/tex]

Now, perform the division:

[tex]\[ \lambda = \frac{3.0}{4.0} \times 10^{8} \times 10^{-18} \][/tex]

[tex]\[ \lambda = 0.75 \times 10^{-10} \][/tex]

Expressing it in scientific notation, we get:

[tex]\[ \lambda = 7.5 \times 10^{-11} \, \text{m} \][/tex]

So, the correct answer is:

B. [tex]\( 7.5 \times 10^{-11} \, \text{m} \)[/tex]