Answer :
Certainly! Let's simplify the given expression [tex]\(\frac{18-36x}{4}\)[/tex] step by step.
1. Start with the given expression:
[tex]\[ \frac{18 - 36x}{4} \][/tex]
2. Separate the terms in the numerator:
[tex]\[ \frac{18}{4} - \frac{36x}{4} \][/tex]
3. Simplify each term individually:
For [tex]\(\frac{18}{4}\)[/tex]:
[tex]\[ \frac{18}{4} = \frac{18 \div 2}{4 \div 2} = \frac{9}{2} \][/tex]
For [tex]\(\frac{36x}{4}\)[/tex]:
[tex]\[ \frac{36x}{4} = \frac{36 \div 4}{4 \div 4} x = 9x \][/tex]
4. Combine the simplified terms:
[tex]\[ \frac{18}{4} - \frac{36x}{4} = \frac{9}{2} - 9x \][/tex]
Therefore, the simplified form of the given expression [tex]\(\frac{18-36x}{4}\)[/tex] is:
[tex]\[ \boxed{\frac{9}{2} - 9x} \][/tex]
1. Start with the given expression:
[tex]\[ \frac{18 - 36x}{4} \][/tex]
2. Separate the terms in the numerator:
[tex]\[ \frac{18}{4} - \frac{36x}{4} \][/tex]
3. Simplify each term individually:
For [tex]\(\frac{18}{4}\)[/tex]:
[tex]\[ \frac{18}{4} = \frac{18 \div 2}{4 \div 2} = \frac{9}{2} \][/tex]
For [tex]\(\frac{36x}{4}\)[/tex]:
[tex]\[ \frac{36x}{4} = \frac{36 \div 4}{4 \div 4} x = 9x \][/tex]
4. Combine the simplified terms:
[tex]\[ \frac{18}{4} - \frac{36x}{4} = \frac{9}{2} - 9x \][/tex]
Therefore, the simplified form of the given expression [tex]\(\frac{18-36x}{4}\)[/tex] is:
[tex]\[ \boxed{\frac{9}{2} - 9x} \][/tex]