The equation [tex]$\cos^{-1}\left(\frac{3.4}{10}\right) = x$[/tex] can be used to determine the measure of angle BAC.



Answer :

Sure! Let's look at the given equation:

[tex]\[ \cos^{-1}\left(\frac{3.4}{10}\right) = x \][/tex]

We'll follow these steps to find the measure of angle BAC.

### Step 1: Calculate the Ratio

First, we need to calculate the ratio [tex]\(\frac{3.4}{10}\)[/tex]:

[tex]\[ \frac{3.4}{10} = 0.34 \][/tex]

This ratio is directly obtained as:

[tex]\[ 0.34 \][/tex]

### Step 2: Find the Angle Using Inverse Cosine

Next, we need to find the angle [tex]\( x \)[/tex] in radians by calculating the inverse cosine (or arccos) of [tex]\( 0.34 \)[/tex]:

[tex]\[ x = \cos^{-1}(0.34) \][/tex]

From the calculations, this gives us:

[tex]\[ x \approx 1.2238794292677349 \text{ radians} \][/tex]

### Step 3: Convert Radians to Degrees (Optional)

If we want the angle in degrees, we need to convert the radians to degrees. The formula to convert radians to degrees is:

[tex]\[ \text{degrees} = x \times \frac{180}{\pi} \][/tex]

Applying this conversion:

[tex]\[ 1.2238794292677349 \text{ radians} \times \frac{180}{\pi} \approx 70.12312592992117 \text{ degrees} \][/tex]

### Summary

We have calculated the following:
- The ratio [tex]\(\frac{3.4}{10} = 0.34\)[/tex]
- The angle [tex]\( x \)[/tex], which is [tex]\( \cos^{-1}(0.34) \approx 1.2238794292677349 \text{ radians} \)[/tex]
- The angle in degrees (optional), which is approximately [tex]\( 70.12312592992117 \text{ degrees} \)[/tex]

Hence, the measure of angle BAC is approximately [tex]\(1.2238794292677349\)[/tex] radians or [tex]\(70.12312592992117\)[/tex] degrees.