What is [tex]-36^{\circ}[/tex] converted to radians?

A. [tex]-5 \pi[/tex]
B. [tex]-\frac{5}{\pi}[/tex]
C. [tex]-\frac{\pi}{5}[/tex]
D. [tex]-\frac{1}{5}[/tex]



Answer :

To convert degrees to radians, you use the conversion factor [tex]\(\frac{\pi}{180}\)[/tex]. Here's the step-by-step process for converting [tex]\(-36^\circ\)[/tex] to radians:

1. Write down the given angle in degrees:
[tex]\[ \theta = -36^\circ \][/tex]

2. Use the conversion factor:
Radians = Degrees [tex]\(*\)[/tex] [tex]\(\frac{\pi}{180}\)[/tex]

3. Substitute the given degrees into the conversion factor:
[tex]\[ \theta_{\text{radians}} = -36 \times \frac{\pi}{180} \][/tex]

4. Simplify the fraction:
[tex]\[ \theta_{\text{radians}} = -36 \times \frac{\pi}{180} = -\frac{36\pi}{180} \][/tex]

5. Reduce the fraction by dividing the numerator and the denominator by their greatest common divisor, which is 36:
[tex]\[ \theta_{\text{radians}} = -\frac{36\pi}{180} = -\frac{\pi}{5} \][/tex]

Therefore, [tex]\(-36^\circ\)[/tex] converted to radians is:
[tex]\[ -\frac{\pi}{5} \][/tex]

Given the multiple choice options:
- [tex]\(-5 \pi\)[/tex]
- [tex]\(-\frac{5}{\pi}\)[/tex]
- [tex]\(-\frac{\pi}{5}\)[/tex]
- [tex]\(-\frac{1}{5}\)[/tex]

The correct answer is:
[tex]\[ -\frac{\pi}{5} \][/tex]