Two particles are separated by 0.38 m and have charges of [tex]$-6.25 \times 10^{-9} C$[/tex] and [tex]$2.91 \times 10^{-9} C$[/tex]. Use Coulomb's law to predict the force between the particles if the distance is cut in half. The equation for Coulomb's law is [tex][tex]$F_e=\frac{k q_1 q_2}{r^2}$[/tex][/tex], and the constant, [tex]$k$[/tex], equals [tex]$9.00 \times 10^9 N \cdot m^2 / C^2$[/tex].

A. [tex][tex]$-4.53 \times 10^{-6} N$[/tex][/tex]

B. [tex]$-1.13 \times 10^{-6} N$[/tex]

C. [tex]$1.13 \times 10^{-6} N$[/tex]

D. [tex][tex]$4.53 \times 10^{-6} N$[/tex][/tex]



Answer :

Let's solve the problem step-by-step using Coulomb's law.

### Step-by-Step Solution:

1. Given Data:
- Charge of particle 1, [tex]\( q_1 = -6.25 \times 10^{-9} \)[/tex] C
- Charge of particle 2, [tex]\( q_2 = 2.91 \times 10^{-9} \)[/tex] C
- Initial distance between the particles, [tex]\( r_{\text{initial}} = 0.38 \)[/tex] m
- Coulomb's constant, [tex]\( k = 9.00 \times 10^9 \)[/tex] N·m²/C²

2. Calculate the Initial Force:
Using Coulomb's law, the force [tex]\( F_e \)[/tex] between two charges is given by:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
For the initial distance [tex]\( r_{\text{initial}} = 0.38 \)[/tex] m:
[tex]\[ F_{\text{initial}} = \frac{(9.00 \times 10^9) \times (-6.25 \times 10^{-9}) \times (2.91 \times 10^{-9})}{(0.38)^2} \][/tex]

3. Initial Force Calculation Result:
The result of this calculation is:
[tex]\[ F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \][/tex]
This indicates that the initial force is approximately [tex]\(-1.13 \times 10^{-6}\)[/tex] N. This is the electrostatic force between the two charges before the distance is changed.

4. New Distance:
The distance between the particles is cut in half:
[tex]\[ r_{\text{new}} = \frac{r_{\text{initial}}}{2} = \frac{0.38}{2} = 0.19 \, \text{m} \][/tex]

5. Calculate the New Force:
Using Coulomb's law again for the new distance:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \times (-6.25 \times 10^{-9}) \times (2.91 \times 10^{-9})}{(0.19)^2} \][/tex]

6. New Force Calculation Result:
The result of this calculation is:
[tex]\[ F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \][/tex]
This means that when the distance is cut in half, the new force is approximately [tex]\(-4.53 \times 10^{-6}\)[/tex] N.

### Conclusion:

So, given the options:
A. [tex]\(-4.53 \times 10^{-6} \, \text{N}\)[/tex]
B. [tex]\(-1.13 \times 10^{-6} \, \text{N}\)[/tex]
C. [tex]\(1.13 \times 10^{-6} \, \text{N}\)[/tex]
D. [tex]\(4.53 \times 10^{-6} \, \text{N}\)[/tex]

The initial force between the particles is [tex]\(-1.13 \times 10^{-6} \, \text{N}\)[/tex] and the force when the distance is cut in half is [tex]\(-4.53 \times 10^{-6} \, \text{N}\)[/tex].

Thus, the answer is:
A. [tex]\(-4.53 \times 10^{-6} \, \text{N}\)[/tex]