Sure, let's solve this step-by-step by evaluating the function [tex]\( f(x) = 3x \)[/tex] at each given value of [tex]\( x \)[/tex].
1. When [tex]\( x = 0 \)[/tex]:
[tex]\[
f(0) = 3 \times 0 = 0
\][/tex]
So, [tex]\( f(0) = 0 \)[/tex].
2. When [tex]\( x = 1 \)[/tex]:
[tex]\[
f(1) = 3 \times 1 = 3
\][/tex]
So, [tex]\( f(1) = 3 \)[/tex].
3. When [tex]\( x = 2 \)[/tex]:
[tex]\[
f(2) = 3 \times 2 = 6
\][/tex]
So, [tex]\( f(2) = 6 \)[/tex].
4. When [tex]\( x = 3 \)[/tex]:
[tex]\[
f(3) = 3 \times 3 = 9
\][/tex]
So, [tex]\( f(3) = 9 \)[/tex].
Hence, we can fill in the table with the calculated values:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{[tex]$f(x)=3 x$[/tex]} \\
\hline[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline 0 & 0 \\
\hline 1 & 3 \\
\hline 2 & 6 \\
\hline 3 & 9 \\
\hline
\end{tabular}