Determine the following indefinite integral:

[tex]\[ \int \frac{4x^7 + 8x^5}{x^4} \, dx \][/tex]

[tex]\[ \int \frac{4x^7 + 8x^5}{x^4} \, dx = \][/tex]



Answer :

To solve the given indefinite integral [tex]\(\int \frac{4 x^7 + 8 x^5}{x^4} \, dx\)[/tex], we will follow these steps:

1. Simplify the integrand:
[tex]\[ \frac{4 x^7 + 8 x^5}{x^4} \][/tex]

We can simplify the fraction by dividing each term in the numerator by [tex]\(x^4\)[/tex]:
[tex]\[ \frac{4 x^7}{x^4} + \frac{8 x^5}{x^4} = 4 x^{7-4} + 8 x^{5-4} = 4 x^3 + 8 x \][/tex]

2. Rewrite the integral with the simplified integrand:
[tex]\[ \int (4 x^3 + 8 x) \, dx \][/tex]

3. Integrate each term separately:
- The integral of [tex]\(4 x^3\)[/tex] with respect to [tex]\(x\)[/tex] is:
[tex]\[ \int 4 x^3 \, dx = 4 \cdot \frac{x^{3+1}}{3+1} = 4 \cdot \frac{x^4}{4} = x^4 \][/tex]

- The integral of [tex]\(8 x\)[/tex] with respect to [tex]\(x\)[/tex] is:
[tex]\[ \int 8 x \, dx = 8 \cdot \frac{x^{1+1}}{1+1} = 8 \cdot \frac{x^2}{2} = 4 x^2 \][/tex]

4. Combine the results and include the constant of integration:
[tex]\[ \int (4 x^3 + 8 x) \, dx = x^4 + 4 x^2 + C \][/tex]

Thus, the indefinite integral is:
[tex]\[ \int \frac{4 x^7 + 8 x^5}{x^4} \, dx = x^4 + 4 x^2 + C \][/tex]