Which expression can be used to find the difference of
[tex]\[ (10m - 6) - (7m - 4) \][/tex]

A. [tex]\((10m + (-7m)) + ((-6) + 4)\)[/tex]

B. [tex]\((10m + 7m) + ((-6) + (-4))\)[/tex]

C. [tex]\((-10m) + (-7m) + (6 + 4)\)[/tex]

D. [tex]\((10m + (-7m)) + (6 + (-4))\)[/tex]



Answer :

To find the correct expression that represents the difference of [tex]\((10m - 6) - (7m - 4)\)[/tex], let's simplify the expression step by step.

1. Start with the given expression:
[tex]\[ (10m - 6) - (7m - 4) \][/tex]

2. Distribute the negative sign through the second parenthesis:
[tex]\[ 10m - 6 - 7m + 4 \][/tex]

3. Combine like terms. First, handle the terms involving [tex]\(m\)[/tex]:
[tex]\[ 10m - 7m = 3m \][/tex]

4. Now, handle the constant terms:
[tex]\[ -6 + 4 = -2 \][/tex]

5. Combining both results, the simplified form of the expression is:
[tex]\[ 3m - 2 \][/tex]

To match the given answer option:

- First choice: [tex]\([10m + (-7m)] + [(-6) + 4]\)[/tex]

In this choice:

- [tex]\(10m + (-7m) = 3m\)[/tex] matches our combination of [tex]\(m\)[/tex] terms.
- [tex]\((-6) + 4 = -2\)[/tex] matches our combination of constant terms.

Thus, the first choice accurately represents the steps we've taken.

So, the correct expression can be used to find the difference of [tex]\((10m - 6) - (7m - 4)\)[/tex] is:
[tex]\[ [10m + (-7m)] + [(-6) + 4] \][/tex]