Answered

Find the inverse of the following algebraic function.

[tex]\[ g(x)=\frac{5}{x-3}+6 \][/tex]

[tex]\[ g^{-1}(x)=\frac{5}{x-6}+3 \][/tex]



Answer :

Let's find the inverse of the function [tex]\( g(x) = \frac{5}{x-3} + 6 \)[/tex] step-by-step.

1. Start with the original function:
[tex]\[ g(x) = \frac{5}{x-3} + 6 \][/tex]

2. Replace [tex]\( g(x) \)[/tex] with [tex]\( y \)[/tex] to facilitate finding the inverse:
[tex]\[ y = \frac{5}{x-3} + 6 \][/tex]

3. Interchange [tex]\( x \)[/tex] and [tex]\( y \)[/tex] (this is effectively saying to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]):
[tex]\[ x = \frac{5}{y-3} + 6 \][/tex]

4. Isolate the fraction by subtracting 6 from both sides:
[tex]\[ x - 6 = \frac{5}{y-3} \][/tex]

5. To isolate [tex]\( y \)[/tex], multiply both sides by [tex]\( y-3 \)[/tex]:
[tex]\[ (x - 6)(y - 3) = 5 \][/tex]

6. Distribute [tex]\( x - 6 \)[/tex] on the left-hand side:
[tex]\[ xy - 3x - 6y + 18 = 5 \][/tex]

7. Rearrange the terms to isolate those containing [tex]\( y \)[/tex] on one side:
[tex]\[ xy - 6y = 3x - 13 \][/tex]

8. Factor out [tex]\( y \)[/tex] on the left-hand side:
[tex]\[ y(x - 6) = 3x - 13 \][/tex]

9. Solve for [tex]\( y \)[/tex] by dividing both sides by [tex]\( x - 6 \)[/tex]:
[tex]\[ y = \frac{3x - 13}{x - 6} \][/tex]

So, the inverse of the function [tex]\( g(x) = \frac{5}{x-3} + 6 \)[/tex] is:
[tex]\[ g^{-1}(x) = \frac{3x - 13}{x - 6} \][/tex]

This is in line with the given solution.