The table shows data for four planetary bodies. If your mass is 68.05 kg, how much gravitational force would you experience on the surface of the Moon? Newton's law of gravitation is [tex]F_{\text{gravity}} = \frac{G m_1 m_2}{r^2}[/tex]. The gravitational constant [tex]G[/tex] is [tex]6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2[/tex]. (For the purposes of calculating the gravitational force between a planet and an object on its surface, the distance [tex]r[/tex] is the radius of the planet.)

\begin{tabular}{|l|l|l|}
\hline
Planetary body & Mass, kg & Radius, m \\
\hline
Earth & [tex]$5.97 \times 10^{24}$[/tex] & [tex]$6.37 \times 10^6$[/tex] \\
\hline
Moon & [tex]$7.35 \times 10^{22}$[/tex] & [tex]$1.74 \times 10^6$[/tex] \\
\hline
Mars & [tex]$6.42 \times 10^{23}$[/tex] & [tex]$3.39 \times 10^6$[/tex] \\
\hline
Mercury & [tex]$3.30 \times 10^{23}$[/tex] & [tex]$2.44 \times 10^6$[/tex] \\
\hline
\end{tabular}

A. 254 N
B. 252 N
C. 110 N
D. 92.1 N



Answer :

To determine the gravitational force you would experience on the surface of the Moon, we can use Newton's law of gravitation, which states:

[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]

where:
- [tex]\( F_{\text{gravity}} \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the Moon, [tex]\( 7.35 \times 10^{22} \, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is your mass, [tex]\( 68.05 \, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the radius of the Moon, [tex]\( 1.74 \times 10^6 \, \text{m} \)[/tex].

Plugging in these values into the equation, we get:

[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \cdot (7.35 \times 10^{22} \, \text{kg}) \cdot (68.05 \, \text{kg})}{(1.74 \times 10^6 \, \text{m})^2} \][/tex]

First, let's calculate [tex]\( (1.74 \times 10^6 \, \text{m})^2 \)[/tex]:

[tex]\[ (1.74 \times 10^6)^2 = 3.0276 \times 10^{12} \, \text{m}^2 \][/tex]

Next, we'll multiply the constants and masses in the numerator:

[tex]\[ (6.67 \times 10^{-11}) \cdot (7.35 \times 10^{22}) \cdot (68.05) = 3.324263775 \times 10^{14} \, \text{N} \cdot \text{m}^2 / \text{kg} \][/tex]

Now, we divide the result from the numerator by the result from the denominator:

[tex]\[ F_{\text{gravity}} = \frac{3.324263775 \times 10^{14}}{3.0276 \times 10^{12}} \approx 110.19015804597701 \, \text{N} \][/tex]

Thus, the gravitational force you would experience on the surface of the Moon is approximately [tex]\( 110 \, \text{N} \)[/tex].

The correct answer is:

C. [tex]\( 110 \, \text{N} \)[/tex]