Find all the antiderivatives for the following function. Check your work by taking the derivative.

[tex]\[ f(y) = -\frac{24}{y^{25}} \][/tex]

The antiderivatives of [tex]\( f(y) = -\frac{24}{y^{25}} \)[/tex] are [tex]\( F(y) = \square \)[/tex].



Answer :

Let's find the antiderivatives of the function [tex]\( f(y) = -\frac{24}{y^{25}} \)[/tex].

### Step 1: Rewrite the Function

Rewrite the function in a more convenient form:

[tex]\[ f(y) = -24y^{-25} \][/tex]

### Step 2: Integrate

To find the antiderivative, we need to perform the integration:

[tex]\[ \int -24y^{-25} \, dy \][/tex]

We use the power rule for integration, which states:

[tex]\[ \int y^n \, dy = \frac{y^{n+1}}{n+1} + C \][/tex]

for any [tex]\( n \neq -1 \)[/tex]. Here, [tex]\( n = -25 \)[/tex]:

[tex]\[ \int -24y^{-25} \, dy = -24 \int y^{-25} \, dy \][/tex]

[tex]\[ \int y^{-25} \, dy = \frac{y^{-25+1}}{-25+1} = \frac{y^{-24}}{-24} \][/tex]

Therefore:

[tex]\[ -24 \int y^{-25} \, dy = -24 \cdot \frac{y^{-24}}{-24} = y^{-24} \][/tex]

Don't forget to add the constant of integration [tex]\( C \)[/tex]:

[tex]\[ \int -24y^{-25} \, dy = y^{-24} + C \][/tex]

So, the antiderivative [tex]\( F(y) \)[/tex] is:

[tex]\[ F(y) = y^{-24} + C \][/tex]

### Step 3: Check the Work

To verify, let's take the derivative of [tex]\( F(y) \)[/tex]:

[tex]\[ \frac{d}{dy}\left( y^{-24} + C \right) \][/tex]

Since the derivative of a constant [tex]\( C \)[/tex] is zero:

[tex]\[ \frac{d}{dy}\left( y^{-24} \right) = -24y^{-25} \][/tex]

So:

[tex]\[ \frac{d}{dy}\left( y^{-24} + C \right) = -24y^{-25} \][/tex]

Which matches the original function [tex]\( f(y) = -24y^{-25} \)[/tex].

### Conclusion

The antiderivatives of [tex]\( f(y) = -\frac{24}{y^{25}} \)[/tex] are:

[tex]\[ F(y) = y^{-24} + C \][/tex]

This confirms our solution is correct.