If [tex]$f(x)=\left(\frac{1}{7}\right)\left(7^x\right)$[/tex], what is [tex]$f(3)$[/tex]?

A. 49
B. [tex]$\frac{1}{343}$[/tex]
C. 343
D. [tex][tex]$\frac{1}{49}$[/tex][/tex]



Answer :

To solve for [tex]\( f(3) \)[/tex] given the function [tex]\( f(x) = \left( \frac{1}{7} \right) (7^x) \)[/tex], let's follow these steps:

1. Substitute [tex]\( x \)[/tex] with 3 in the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(3) = \left( \frac{1}{7} \right) (7^3) \][/tex]

2. Calculate [tex]\( 7^3 \)[/tex]:
[tex]\[ 7^3 = 7 \times 7 \times 7 = 343 \][/tex]

3. Multiply [tex]\( \frac{1}{7} \)[/tex] by [tex]\( 343 \)[/tex]:
[tex]\[ f(3) = \left( \frac{1}{7} \right) \times 343 = \frac{343}{7} \][/tex]

4. Simplify [tex]\( \frac{343}{7} \)[/tex]:
[tex]\[ \frac{343}{7} = 49 \][/tex]

Thus, the value of [tex]\( f(3) \)[/tex] is [tex]\( 49 \)[/tex].

The correct answer is:
A. 49