Point [tex]\( C \in \overline{AB} \)[/tex] and [tex]\( AB = 18 \, \text{cm} \)[/tex]. The distance from [tex]\( C \)[/tex] to [tex]\( A \)[/tex] is 3 cm shorter than the distance from [tex]\( C \)[/tex] to [tex]\( B \)[/tex]. Find [tex]\( AC \)[/tex] and [tex]\( CB \)[/tex].

[tex]\[ AC = \square \, \text{cm}, \quad CB = \square \, \text{cm} \][/tex]



Answer :

Let's solve the given problem step-by-step.

1. Identify the known information:
- The total length of [tex]\( AB \)[/tex] is 18 cm.
- Let [tex]\( AC \)[/tex] be the distance from [tex]\( A \)[/tex] to [tex]\( C \)[/tex].
- Let [tex]\( CB \)[/tex] be the distance from [tex]\( C \)[/tex] to [tex]\( B \)[/tex].
- We are given that [tex]\( AC \)[/tex] is 3 cm shorter than [tex]\( CB \)[/tex].

2. Establish relationships based on the information given:
- We can denote the distance [tex]\( AC \)[/tex] as [tex]\( x \)[/tex] cm.
- Since [tex]\( AC \)[/tex] is 3 cm shorter than [tex]\( CB \)[/tex], we can write [tex]\( CB \)[/tex] as [tex]\( x + 3 \)[/tex] cm.
- The sum of [tex]\( AC \)[/tex] and [tex]\( CB \)[/tex] is equal to the length of [tex]\( AB \)[/tex]. So, [tex]\( x + (x + 3) = 18 \)[/tex].

3. Set up the equation:
- From the relationship above:
[tex]\[ x + (x + 3) = 18 \][/tex]
- Simplify the equation:
[tex]\[ 2x + 3 = 18 \][/tex]

4. Solve for [tex]\( x \)[/tex]:
- Subtract 3 from both sides:
[tex]\[ 2x = 15 \][/tex]
- Divide both sides by 2:
[tex]\[ x = 7.5 \][/tex]

5. Calculate [tex]\( CB \)[/tex]:
- Since [tex]\( CB = x + 3 \)[/tex]:
[tex]\[ CB = 7.5 + 3 = 10.5 \][/tex]

So, the distances are:
[tex]\[ AC = 7.5 \, \text{cm} \][/tex]
[tex]\[ CB = 10.5 \, \text{cm} \][/tex]

Therefore, the lengths are:
[tex]\[ AC = 7.5 \, \text{cm}, \quad CB = 10.5 \, \text{cm} \][/tex]