Simplify the expression.

[tex]\[
\left(-\frac{1}{5} r - 4 - \frac{2}{3} r \right) - \left( -\frac{4}{5} r + 9 \right)
\][/tex]

A. [tex]\(-\frac{25}{15} r - 5\)[/tex]

B. [tex]\(\frac{5}{7} r + (-13)\)[/tex]

C. [tex]\(-\frac{1}{15} r - 5\)[/tex]

D. [tex]\(-\frac{1}{15} r + (-13)\)[/tex]



Answer :

Sure, let's simplify the given expression step by step.

### Given Expression:

[tex]\[ \left(-\frac{1}{5} r - 4 - \frac{2}{3} r\right)-\left(-\frac{4}{5} r + 9\right) \][/tex]

### Step-by-Step Simplification:

Step 1: Distribute the negative sign through the second group of terms:

[tex]\[ \left(-\frac{1}{5} r - 4 - \frac{2}{3} r\right) + \left(\frac{4}{5} r - 9\right) \][/tex]

Step 2: Combine like terms involving [tex]\( r \)[/tex]:

Combine [tex]\(-\frac{1}{5} r\)[/tex], [tex]\(-\frac{2}{3} r\)[/tex], and [tex]\(\frac{4}{5} r\)[/tex]:
First, we find a common denominator for the fractions:

- [tex]\(\frac{1}{5} = \frac{3}{15}\)[/tex]
- [tex]\(\frac{2}{3} = \frac{10}{15}\)[/tex]
- [tex]\(\frac{4}{5} = \frac{12}{15}\)[/tex]

Then, convert these fractions to have a common denominator:

[tex]\[ -\frac{1}{5}r = -\frac{3}{15}r \][/tex]
[tex]\[ -\frac{2}{3}r = -\frac{10}{15}r \][/tex]
[tex]\[ \frac{4}{5}r = \frac{12}{15}r \][/tex]

Now, combine the terms:

[tex]\[ -\frac{3}{15}r - \frac{10}{15}r + \frac{12}{15}r \][/tex]

Combine the fractions:

[tex]\[ \left(-3 - 10 + 12\right) \frac{r}{15} = \frac{-1}{15}r \][/tex]

So, the combined [tex]\( r \)[/tex] terms are:

[tex]\[ -\frac{1}{15}r \][/tex]

Step 3: Combine the constant terms:

Combine [tex]\(-4\)[/tex] and [tex]\(-9\)[/tex]:

[tex]\[ -4 - 9 = -13 \][/tex]

### The Simplified Expression:

Putting it all together, the simplified expression is:

[tex]\[ -\frac{1}{15}r - 13 \][/tex]

Therefore, the correct answer is:

[tex]\[ -\frac{1}{15} r + (-13) \][/tex]

Hence,

[tex]\[ \boxed{-\frac{1}{15} r + (-13)} \][/tex]

This matches with one of the given options.