Answer :
To find the minimum value in the given list of numbers, follow these steps:
1. Gather all the numbers from the table into a single list.
2. Identify and ignore any empty or missing values.
3. Determine the smallest value from the list.
Let's take a look at each step in detail:
### Step 1: Gather All the Numbers
We will collect all the numbers from the table as follows:
[tex]\[ \begin{align*} 80, & 12, \\ 38, & 56, \\ 36, & 14, \\ 60, & 5, \\ 19, & 96, \\ 51, & 4, \\ 85, & 74, \\ 28 & \end{align*} \][/tex]
### Step 2: Ignore Missing Values
Observe that the last pair in the table has only one number, 28, and the other position is missing. So, we will ignore that empty value.
### Step 3: Determine the Smallest Value
From our collection of numbers:
[tex]\[ 80, 12, 38, 56, 36, 14, 60, 5, 19, 96, 51, 4, 85, 74, 28 \][/tex]
we need to find the smallest value.
When we compare all these numbers, we find that:
[tex]\[ 5 < 12,\ 38,\ 56,\ 36,\ 14,\ 60,\ 19,\ 96,\ 51,\ 85,\ 74,\ 28 \][/tex]
and
[tex]\[ 4 < 5 \][/tex]
Therefore, the smallest value in the entire list is:
[tex]\[ \boxed{4} \][/tex]
Minimum [tex]\( = 4 \)[/tex]
So, the minimum value from the given list of numbers is 4.
1. Gather all the numbers from the table into a single list.
2. Identify and ignore any empty or missing values.
3. Determine the smallest value from the list.
Let's take a look at each step in detail:
### Step 1: Gather All the Numbers
We will collect all the numbers from the table as follows:
[tex]\[ \begin{align*} 80, & 12, \\ 38, & 56, \\ 36, & 14, \\ 60, & 5, \\ 19, & 96, \\ 51, & 4, \\ 85, & 74, \\ 28 & \end{align*} \][/tex]
### Step 2: Ignore Missing Values
Observe that the last pair in the table has only one number, 28, and the other position is missing. So, we will ignore that empty value.
### Step 3: Determine the Smallest Value
From our collection of numbers:
[tex]\[ 80, 12, 38, 56, 36, 14, 60, 5, 19, 96, 51, 4, 85, 74, 28 \][/tex]
we need to find the smallest value.
When we compare all these numbers, we find that:
[tex]\[ 5 < 12,\ 38,\ 56,\ 36,\ 14,\ 60,\ 19,\ 96,\ 51,\ 85,\ 74,\ 28 \][/tex]
and
[tex]\[ 4 < 5 \][/tex]
Therefore, the smallest value in the entire list is:
[tex]\[ \boxed{4} \][/tex]
Minimum [tex]\( = 4 \)[/tex]
So, the minimum value from the given list of numbers is 4.